Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Biol Chem ; 300(2): 105602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159852

RESUMO

In humans, skeletal muscles comprise nearly 40% of total body mass, which is maintained throughout adulthood by a balance of muscle protein synthesis and breakdown. Cellular amino acid (AA) levels are critical for these processes, and mammalian cells contain transporter proteins that import AAs to maintain homeostasis. Until recently, the control of transporter regulation has largely been studied at the transcriptional and posttranslational levels. However, here, we report that the RNA-binding protein YBX3 is critical to sustain intracellular AAs in mouse skeletal muscle cells, which aligns with our recent findings in human cells. We find that YBX3 directly binds the solute carrier (SLC)1A5 AA transporter messenger (m)RNA to posttranscriptionally control SLC1A5 expression during skeletal muscle cell differentiation. YBX3 regulation of SLC1A5 requires the 3' UTR. Additionally, intracellular AAs transported by SLC1A5, either directly or indirectly through coupling to other transporters, are specifically reduced when YBX3 is depleted. Further, we find that reduction of the YBX3 protein reduces proliferation and impairs differentiation in skeletal muscle cells, and that YBX3 and SLC1A5 protein expression increase substantially during skeletal muscle differentiation, independently of their respective mRNA levels. Taken together, our findings suggest that YBX3 regulates AA transport in skeletal muscle cells, and that its expression is critical to maintain skeletal muscle cell proliferation and differentiation.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica/genética , Células NIH 3T3 , Células HCT116 , Proliferação de Células/genética , Diferenciação Celular/genética
2.
BMC Genomics ; 25(1): 236, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438962

RESUMO

BACKGROUND: The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS: Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION: We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.


Assuntos
Ferroptose , Vitiligo , Humanos , Vitiligo/genética , Proteínas de Ligação a RNA/genética , Melanócitos , RNA , Cadeia Pesada da Proteína-1 Reguladora de Fusão
3.
Cell Biol Toxicol ; 40(1): 5, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267663

RESUMO

3-Methylcholanthracene (3-MC) is one of the most carcinogenic polycyclic aromatic hydrocarbons (PAHs). Long-term exposure to PAHs has been thought of as an important factor in urothelial tumorigenesis. N6-methyladenosine (m6A) exists widely in eukaryotic organisms and regulates the expression level of specific genes by regulating mRNA stability, translation efficiency, and nuclear export efficiency. Currently, the potential molecular mechanisms that regulate m6A modification for 3-MC carcinogenesis remain unclear. Here, we profiled mRNA, m6A, translation and protein level using "-omics" methodologies, including transcriptomes, m6A profile, translatomes, and proteomics in 3-MC-transformed urothelial cells and control cells. The key molecules SLC3A2/SLC7A5 were screened and identified in 3-MC-induced uroepithelial transformation. Moreover, SLC7A5/SLC3A2 promoted uroepithelial cells malignant phenotype in vitro and in vivo. Mechanically, METTL3 and ALKBH5 mediated m6A modification of SLC3A2/SLC7A5 mRNA in 3-MC-induced uroepithelial transformation by upregulating the translation of SLC3A2/SLC7A5. Furthermore, programmable m6A modification of SLC3A2/SLC7A5 mRNA affected the expression of its proteins. Taken together, our results revealed that the m6A modification-mediated SLC3A2/SLC7A5 translation promoted 3-MC-induced uroepithelial transformation, suggesting that targeting m6A modification of SLC3A2/SLC7A5 may be a potential therapeutic strategy for bladder cancer related to PAHs.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Metilcolantreno/toxicidade , Carcinogênese , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , RNA Mensageiro/genética , Metiltransferases/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão
4.
J Cell Mol Med ; 28(5): e18010, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37927242

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignancy originating from oral mucosal tissue. OSCC cells employ immune evasion strategies to avoid immune attacks, but research on inhibiting immune evasion and delaying OSCC progression is limited. This study aimed to investigate how SLC3A2 downregulation mediates immune evasion and promotes metastasis in OSCC through bioinformatics analysis and cell experiments. Gene enrichment analysis was performed using human double sulphur death-related genes from the GSEA database. Differentially expressed genes were selected from the GEO database. Diagnostic models were constructed and validated using gene expression datasets. Immune infiltration and function were analysed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Cell experiments were conducted to evaluate the impact of SLC3A2 on immune response in OSCC. Ten double sulphur death-related genes were identified, with SLC3A2 and SLC7A11 being enriched in tongue squamous cell carcinoma-related diseases. Differential expression analysis revealed five genes (SLC3A2, SLC7A11, RPN1, GYS1 and NDUFS1) of diagnostic significance. GO analysis showed enrichment in amino acid import and transmembrane transport, while KEGG pathway analysis highlighted enrichment in ferroptosis, diabetic cardiomyopathy, and Starch and sucrose metabolism. Experimental verification confirmed higher SLC3A2 expression in OSCC cells. Overexpression of SLC3A2 inhibited cell proliferation and reduced PD-1 and CTLA-4 expression. Reduced SLC3A2 expression in OSCC promotes immune evasion and tumour progression by impairing T lymphocyte function. This study provides insights into targeted regulation of SLC3A2 expression for immune response-based therapies in OSCC.

5.
Cancer Sci ; 114(6): 2306-2317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36793241

RESUMO

Tumor-associated macrophages (TAMs) are one of the most abundant immunosuppressive cells in the tumor microenvironment and possess crucial functions in facilitating tumor progression. Emerging evidence indicates that altered metabolic properties in cancer cells support the tumorigenic functions of TAMs. However, the mechanisms and mediators the underly the cross-talk between cancer cells and TAMs remain largely unknown. In the present study, we revealed that high solute carrier family 3 member 2 (SLC3A2) expression in lung cancer patients was associated with TAMs and poor prognosis. Knockdown of SLC3A2 in lung adenocarcinoma cells impaired M2 polarization of macrophages in a coculture system. Using metabolome analysis, we identified that SLC3A2 knockdown altered the metabolism of lung cancer cells and changed multiple metabolites, including arachidonic acid, in the tumor microenvironment. More importantly, we showed that arachidonic acid was responsible for SLC3A2-mediated macrophage polarization in the tumor microenvironment to differentiate into M2 type both in vitro and in vivo. Our data illustrate previously undescribed mechanisms responsible for TAM polarization and suggest that SLC3A2 acts as a metabolic switch on lung adenocarcinoma cells to induce macrophage phenotypic reprogramming through arachidonic acid.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Macrófagos Associados a Tumor/patologia , Ácido Araquidônico/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Adenocarcinoma de Pulmão/patologia , Microambiente Tumoral , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo
6.
World J Urol ; 41(5): 1215-1220, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36565321

RESUMO

PURPOSE: The currently recommended treatment strategy for cystine stone formers is based on a progressive approach that starts with the most conservative measures. In patients with cystinuria, increased patient compliance with dietary management and medical treatment is associated with fewer stone interventions. In this case-based review, the dietary management of cystine stone former was reviewed under the guidance of evidence-based medicine. METHODS: The dietary management of the 13-year-old cystinuria patient, who underwent 18 endourological stone interventions, was reviewed in the light of evidence-based medicine. A literature search was performed in Pubmed, MEDLINE, Embase, and Cochrane Library databases according to PRISMA guidelines published from 1993 to September 2022. A total of 304 articles were included in this paper. RESULTS: In managing patients with cystinuria, hyperhydration, and alkalinization of the urine with medical treatment, the rational use of cystine-binding drugs by taking into account individual situations has come to the fore. A limited study has argued that a vegetarian diet is effective as the alkaline load from fruits and vegetables can reduce the amount of alkalizing substances required to achieve urinary alkalinization above pH 7.5, making it particularly suitable for the dietary treatment of cystine stone disease. CONCLUSION: Life-long follow-up with dietary modification, hyperhydration, and personalized medical therapy (alkalinization and cystine-binding drugs) are critical in preventing chronic kidney disease and kidney failure in cystinuria.


Assuntos
Cistinúria , Cálculos Renais , Intoxicação por Água , Adolescente , Humanos , Cistina , Cistinúria/complicações , Cistinúria/terapia , Dieta , Cálculos Renais/terapia , Intoxicação por Água/complicações
7.
Int J Med Sci ; 20(8): 1060-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484811

RESUMO

Background: Solute Carrier Family 3 Member 2 (SLC3A2) is a member of the solute carrier family that plays pivotal roles in regulation of intracellular calcium levels and transports L-type amino acids. However, there are insufficient scientific researches on the prognostic and immunological roles of SLC3A2 in breast cancer (BC) and whether everolimus regulates novel SLC3A2 related molecular mechanism in the immuno-oncology context of the tumor microenvironment (TME), therefore, we see a necessity to conduct the current in silico and biological experimental study. Methods: Using diverse online databases, we investigated the role of SLC3A2 in therapy response, clinicopathological characteristics, tumor immune infiltration, genetic alteration, methylation and single cell sequencing in BC. WB, Co-IP, cell proliferation assay, Edu staining, ROS and GSH assay and in vivo tumor xenograft assays were performed to verify FKBP1A/SLC3A2 axis in everolimus inducing ferroptosis of breast cancer. Co-cultures and IL-9 ELISA were performed to demonstrate the T lymphocyte function. Results: We demonstrated that SLC3A2 was aberrantly expressed among various BC cohorts. Our results also suggested that SLC3A2 expression was associated with chemotherapeutic outcome in BC patients. Our results further indicated that SLC3A2 was associated with tumor infiltration of cytotoxic T cell but not other immune cells among BC TME. The alterations in SLC3A2 gene had a significant correlation to relapse free survival and contributed a significant impact on BC tumor mutational burden. Finally, SLC3A2 was illustrated to be expressed in diverse BC cellular populations at single cell level, and negatively linked to angiogenesis, inflammation and quiescence, but positively correlated with other functional phenotypes. Noteworthily, everolimus (a targeted therapy drug for BC) related protein, FK506-binding protein 1A (FKBP1A) was found to bind with SLC3A2, and negatively regulated SLC3A2 expression during the processes of everolimus inducing ferroptosis of BC cells and promoting anti-proliferation of Th9 lymphocytes. Conclusions: Altogether, our study strongly implies that SLC3A2 is an immuno-oncogenic factor and FKBP1A/SLC3A2 axis would provide insights for a novel immunotherapy approach for the treatment of BC in the context of TME.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Everolimo/farmacologia , Everolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ferroptose/genética , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
8.
BMC Urol ; 23(1): 130, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525149

RESUMO

BACKGROUND: Cystinuria and xanthinuria are both rare genetic diseases involving urinary calculi. However, cases combining these two disorders have not yet been reported. CASE PRESENTATION: In this study, we report a case of cystinuria with xanthine stones and hyperuricemia. The 23-year-old male patient was diagnosed with kidney and ureteral stones, solitary functioning kidney and hyperuricemia after admission to the hospital. The stones were removed by surgery and found to be composed of xanthine. CONCLUSION: Genetic testing by next-generation sequencing technology showed that the patient carried the homozygous nonsense mutation c.1113 C> A (p.Tyr371*) in the SLC3A1 gene, which was judged to be a functionally pathogenic variant. Sanger sequencing revealed that the patient's parents carried this heterozygous mutation, which is a pathogenic variant that can cause cystinuria. The 24-h urine metabolism analysis showed that the cystine content was 644 mg (<320 mg/24 h), indicating that the patient had cystinuria, consistent with the genetic test results. This case shows that cystinuria and xanthine stones can occur simultaneously, and provides evidence of a possible connection between the two conditions. Furthermore, our findings demonstrate the potential value of genetic testing using next-generation sequencing to effectively assist in the clinical diagnosis and treatment of patients with urinary calculi.


Assuntos
Sistemas de Transporte de Aminoácidos , Cistinúria , Humanos , Masculino , Adulto Jovem , Cistinúria/genética , Sistemas de Transporte de Aminoácidos/genética , Xantina , Cálculos Renais , Hiperuricemia , Códon sem Sentido , Testes Genéticos , Linhagem , Feminino
9.
Proc Natl Acad Sci U S A ; 117(35): 21281-21287, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817565

RESUMO

Heteromeric amino acid transporters (HATs) comprise a group of membrane proteins that belong to the solute carrier (SLC) superfamily. They are formed by two different protein components: a light chain subunit from an SLC7 family member and a heavy chain subunit from the SLC3 family. The light chain constitutes the transport subunit whereas the heavy chain mediates trafficking to the plasma membrane and maturation of the functional complex. Mutation, malfunction, and dysregulation of HATs are associated with a wide range of pathologies or represent the direct cause of inherited and acquired disorders. Here we report the cryogenic electron microscopy structure of the neutral and basic amino acid transport complex (b[0,+]AT1-rBAT) which reveals a heterotetrameric protein assembly composed of two heavy and light chain subunits, respectively. The previously uncharacterized interaction between two HAT units is mediated via dimerization of the heavy chain subunits and does not include participation of the light chain subunits. The b(0,+)AT1 transporter adopts a LeuT fold and is captured in an inward-facing conformation. We identify an amino-acid-binding pocket that is formed by transmembrane helices 1, 6, and 10 and conserved among SLC7 transporters.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/ultraestrutura , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/ultraestrutura , Células HEK293 , Humanos , Estrutura Quaternária de Proteína
10.
J Cell Mol Med ; 26(12): 3410-3422, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567291

RESUMO

This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT-qPCR. SW480 and SW620 cells were transfected with sh-MIF and sh-SLC3A2, respectively. MIF, SLC3A2, GPX4, E-cadherin and N-cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co-immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up-regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial-mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK-3ß pathway in vivo. The Akt/GSK-3ß pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Glicogênio Sintase Quinase 3 beta , Ferro , Fatores Inibidores da Migração de Macrófagos , Proteínas Proto-Oncogênicas c-akt , Animais , Morte Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ferro/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
Cell Mol Biol Lett ; 27(1): 40, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596131

RESUMO

BACKGROUND: In patients with acute aortic dissection (AAD), increased vascular smooth muscle cell (VSMC) apoptosis has been found. Human cytomegalovirus (HCMV)-miR-US33-5p was significantly increased in the plasma of patients with AAD. However, the roles of miR-US33-5p in human aortic VSMC (HA-VSMC) apoptosis remain to be elucidated. METHODS: In the current study, cell apoptosis was analyzed by flow cytometry, cell proliferation by CCK-8 assay, and differentially expressed genes by RNA sequencing. Luciferase reporter assay was used for binding analysis between miR-US33-5p and endothelial PAS domain protein 1 (EPAS1), and EPAS1 and amino acid transporter heavy chain, member 2 (SLC3A2). The enrichment degree of SLC3A2 promoter DNA was analyzed by chromatin immunoprecipitation assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunoblotting were performed for measuring messenger RNA (mRNA) and protein levels, respectively. RESULTS: It was found that HCMV infection inhibited proliferation but promoted HA-VSMC apoptosis by upregulating HCMV-miR-US33-5p. Transfection of HCMV-miR-US33-5p mimics the significant effect on several signaling pathways including integrin signaling as shown in the RNA sequencing data. Western blotting analysis confirmed that HCMV-miR-US33-5p mimics suppression of the activity of key factors of the integrin signal pathway including FAK, AKT, CAS, and Rac. Mechanistic study showed that HCMV-miR-US33-5p bound to the 3'-untranslated region of EPAS1 to suppress its expression, leading to suppression of SLC3A2 expression, which ultimately promoted cell apoptosis and inhibited cell proliferation. This was confirmed by the findings that silencing EPAS1 significantly reduced the SLC3A2 expression and inhibited proliferation and key factors of integrin signal pathway. CONCLUSIONS: HCMV-miR-US33-5p suppressed proliferation, key factors of integrin signal pathway, and EPAS1/SLC3A2 expression, but promoted HA-VSMC apoptosis. These findings highlighted the importance of HCMV-miR-US33-5p/EPAS1/SCL3A2 signaling and may provide new insights into therapeutic strategies for AAD.


Assuntos
Dissecção Aórtica , Citomegalovirus , MicroRNAs , Miócitos de Músculo Liso , Dissecção Aórtica/metabolismo , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/genética , Citomegalovirus/genética , Citomegalovirus/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Integrinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
Hereditas ; 159(1): 6, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057861

RESUMO

OBJECTIVE: This study aimed to explore the mRNA and protein expression of SLC3A2 in laryngeal carcinoma cells and tissues, and functional regulatory mechanism of SLC3A2 in cell ferroptosis of laryngeal carcinoma. METHODS: We chose the key gene-SLC3A2 of DEGs from TCGA by bioinformatics analysis, and then we constructed stable knockdown of SLC3A2 in laryngeal carcinoma cells. MTT assay and clonogenic assay were used to determine cell viability and cell growth, respectively. The mRNA and protein expression were determined by RT-qPCR and western blotting, respectively. Xenograft tumor model was used to determine the role of SLC3A2 in tumor growth. RESULTS: The results of limma analysis recovered that 92 genes were involved in both upregulated DEGs and high risk of poor prognosis, whereas 36 genes were involved in both downregulated DEGs and low risk of poor prognosis. Pathway enrichment analysis indicated that mTOR signaling pathway and ferroptosis exerted a role in regulating these intersection genes. Moreover, SLC3A2 is a key gene in ferroptosis in laryngeal carcinoma. SLC3A2 is highly expressed in laryngeal carcinoma tissues and cells. Patients with high SLC3A2 expression exerted poor survival. SLC3A2 deficiency inhibited cell proliferation and foci formation. Furthermore, knockdown of SLC3A2 expression induced the efficacy of ferroptosis and suppressed ferroptosis related proteins expression. Mechanically, SLC3A2 deficiency facilitated ferroptosis through upregulating the expression of mTOR and P70S6K, whereas inhibited p-mTOR and p-P70S6K expression in laryngeal carcinoma cells. SLC3A2 deficiency inhibited tumorigenesis in nude mice. CONCLUSION: Our study suggests that SLC3A2 negatively regulates ferroptosis through mTOR pathway in laryngeal carcinoma.


Assuntos
Carcinoma , Ferroptose , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Neoplasias Laríngeas/patologia , Animais , Proliferação de Células , Humanos , Neoplasias Laríngeas/genética , Camundongos , Camundongos Nus , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
J Oral Pathol Med ; 50(4): 371-377, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33184944

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is the most common cancer in oral and maxillofacial tissue. This study aimed to investigate the expression of SLC3A2 in human OSCC tissues and its regulatory roles in OSCC. METHODS: The expression of SLC3A2 in human OSCC tissues was assessed using immunohistochemistry. The proliferation, migration, and invasion of oral squamous cells were evaluated after knockdown of SLC3A2. RESULTS: The expression of SLC3A2 in OSCC was higher than that in normal oral epithelial cells. SLC3A2 had higher expression levels in OSCC tissues than that in adjacent normal tissues. Upregulation of SLC3A2 was associated with advanced stages and poor survival of OSCC patients. In vitro experiments showed that knocking down of SLC3A2 was associated with reduced migration, invasion, and proliferation, but increased apoptosis of OSCC cells. CONCLUSION: SLC3A2 exerted a harmful effect on OSCC patients by increasing migration, invasion and proliferation, and decreasing apoptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Células Epiteliais , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/genética , Prognóstico
14.
Adv Exp Med Biol ; 21: 13-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33052588

RESUMO

Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost ß uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.


Assuntos
Aminoácidos , Aminoácidos/metabolismo , Dimerização , Humanos
15.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684812

RESUMO

It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.


Assuntos
Sistemas de Transporte de Aminoácidos/química , alfa-Glucosidases/química , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Domínio Catalítico , Microscopia Crioeletrônica , Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas , alfa-Glucosidases/genética
16.
J Biol Chem ; 294(8): 2732-2743, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593510

RESUMO

Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.


Assuntos
Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , MicroRNAs/genética , Mielopoese , RNA Mensageiro/antagonistas & inibidores , Proteínas de Peixe-Zebra/antagonistas & inibidores , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/antagonistas & inibidores , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Fatores de Transcrição GATA/antagonistas & inibidores , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Fator de Transcrição GATA5/antagonistas & inibidores , Fator de Transcrição GATA5/genética , Fator de Transcrição GATA5/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993041

RESUMO

Heterodimeric amino acid transporters (HATs) are protein complexes mediating the transport of amino acids and derivatives thereof across biological membranes. HATs are composed of two subunits, a heavy and a light chain subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. The human HAT 4F2hc-LAT2 is composed of the type-II membrane N-glycoprotein 4F2hc (SCL3A2) and the L-type amino acid transporter LAT2 (SLC7A8), which are covalently linked to each other by a conserved disulfide bridge. Whereas LAT2 catalyzes substrate transport, 4F2hc is important for the successful trafficking of the transporter to the plasma membrane. The overexpression, malfunction, or absence of 4F2hc-LAT2 is associated with human diseases, and therefore, this heterodimeric complex represents a potential drug target. The recombinant human 4F2hc-LAT2 can be functionally overexpressed in the methylotrophic yeast Pichia pastoris, and the protein can be purified. Here, we present the cryo-EM density map of the human 4F2hc-LAT2 amino acid transporter at sub-nanometer resolution. A homology model of 4F2hc-LAT2 in the inward-open conformation was generated and fitted into the cryo-EM density and analyzed. In addition, disease-causing point mutations in human LAT2 were mapped on the homology model of 4F2hc-LAT2, and the possible functional implications on the molecular level are discussed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Proteínas Recombinantes/química , Humanos , Conformação Proteica
18.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093034

RESUMO

The majority of breast cancers are oestrogen-receptor-positive (ER+) and are subject to endocrine therapy; however, an unpredictable subgroup of patients will develop resistance to endocrine therapy. The SLC7A5/SLC3A2 complex is a major route for the transport of large neutral essential amino acids through the plasma membrane. Alterations in the expression and function of those amino-acid transporters lead to metabolic reprogramming, which contributes to the tumorigenesis and drug resistance. This study aims to assess the effects and roles of SLC7A5/SLC3A2 co-expression in predicting responses to endocrine therapy in patients with ER+ breast cancer. The biological and clinical impact of SLC7A5/SLC3A2 co-expression was assessed in large annotated cohorts of ER+/HER2- breast cancer with long-term follow-up at the mRNA and protein levels. In vitro experiments were conducted to investigate the effect of SLC7A5/SLC3A2 knockdown in the proliferation of cancer cells and to the sensitivity to tamoxifen. We found that proliferation-related genes are highly expressed in a subgroup of patients with high SLC7A5/SLC3A2, and knockdown of SLC7A5/SLC3A2 decreased proliferation of ER+ breast cancer cells. In patients treated with endocrine therapy, high SLC7A5/SLC3A2 co-expression was associated with poor patient outcome, and depletion of SLC7A5/SLC3A2 using siRNA increased the sensitivity of breast cancer cells to tamoxifen. On the basis of our findings, SLC7A5/SLC3A2 co-expression has the potential of identifying a subgroup of ER+/HER2- breast cancer patients who fail to benefit from endocrine therapy and could guide the choice of other alternative therapies.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Transportador 1 de Aminoácidos Neutros Grandes/genética , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Prognóstico , RNA Interferente Pequeno , Análise de Regressão , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
19.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1211-1229, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909287

RESUMO

The quinazoline based drug prazosin (PRZ) is a potent inducer of apoptosis in human cancer cells. We recently reported that PRZ enters cells via endocytosis and induces tubulation of the endolysosomal system. In a proteomics approach aimed at identifying potential membrane proteins with binding affinity to quinazolines, we detected the oncoprotein CD98hc. We confirmed shuttling of CD98hc towards lysosomes and upregulation of CD98hc expression in PRZ treated cells. Gene knockout (KO) experiments revealed that endocytosis of PRZ still occurs in the absence of CD98hc - suggesting that PRZ does not enter the cell via CD98hc but misroutes the protein towards tubular lysosomes. Lysosomal tubulation interfered with completion of cytokinesis and provoked endoreplication. CD98hc KO cells showed reduced endoreplication capacity and lower sensitivity towards PRZ induced apoptosis than wild type cells. Thus, loss of CD98hc does not affect endocytosis of PRZ and lysosomal tubulation, but the ability for endoreplication and survival of cells. Furthermore, we found that glutamine, lysomototropic agents - namely chloroquine and NH4Cl - as well as inhibition of v-ATPase, interfere with the intracellular transport of CD98hc. In summary, our study further emphasizes lysosomes as target organelles to inhibit proliferation and to induce cell death in cancer. Most importantly, we demonstrate for the first time that the intracellular trafficking of CD98hc can be modulated by small molecules. Since CD98hc is considered as a potential drug target in several types of human malignancies, our study possesses translational significance suggesting, that old drugs are able to act on a novel target.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Lisossomos/efeitos dos fármacos , Neoplasias/metabolismo , Prazosina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células K562 , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transporte Proteico/efeitos dos fármacos , Regulação para Cima
20.
Breast Cancer Res Treat ; 175(1): 27-38, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30671766

RESUMO

PURPOSE: Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity, and patient outcome. Glutamine availability for growth and progression of BC is important in several BC subtypes. This study aimed to evaluate the biological and prognostic role of the combined expression of key glutamine transporters, SLC1A5, SLC7A5, and SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. METHODS: SLC1A5, SLC7A5, and SLC3A2 were assessed at the protein level, using immunohistochemistry on tissue microarrays constructed from a large well-characterised BC cohort (n = 2248). Patients were stratified into accredited clusters based on protein expression and correlated with clinicopathological parameters, molecular subtypes, and patient outcome. RESULTS: Clustering analysis of SLC1A5, SLC7A5, and SLC3A2 identified three clusters low SLCs (SLC1A5-/SLC7A5-/SLC3A2-), high SLC1A5 (SLC1A5+/SLC7A5-/SLC3A2-), and high SLCs (SLC1A5+/SLC7A5+/SLC3A2+) which had distinct correlations to known prognostic factors and patient outcome (p < 0.001). The key regulator of tumour cell metabolism, c-MYC, was significantly expressed in tumours in the high SLC cluster (p < 0.001). When different BC subtypes were considered, the association with the poor outcome was observed in the ER+ high proliferation/luminal B class only (p = 0.003). In multivariate analysis, SLC clusters were independent risk factor for shorter BC-specific survival (p = 0.001). CONCLUSION: The co-operative expression of SLC1A5, SLC7A5, and SLC3A2 appears to play a role in the aggressive subclass of ER+ high proliferation/luminal BC, driven by c-MYC, and therefore have the potential to act as therapeutic targets, particularly in synergism.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Receptores de Estrogênio/metabolismo , Idoso , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Família Multigênica , Gradação de Tumores , Metástase Neoplásica , Prognóstico , Receptores de Estrogênio/genética , Proteínas Carreadoras de Solutos/genética , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA