Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433664

RESUMO

The trace element zinc is essential for many aspects of physiology. The mitochondrion is a major Zn2+ store, and excessive mitochondrial Zn2+ is linked to neurodegeneration. How mitochondria maintain their Zn2+ homeostasis is unknown. Here, we find that the SLC-30A9 transporter localizes on mitochondria and is required for export of Zn2+ from mitochondria in both Caenorhabditis elegans and human cells. Loss of slc-30a9 leads to elevated Zn2+ levels in mitochondria, a severely swollen mitochondrial matrix in many tissues, compromised mitochondrial metabolic function, reductive stress, and induction of the mitochondrial stress response. SLC-30A9 is also essential for organismal fertility and sperm activation in C. elegans, during which Zn2+ exits from mitochondria and acts as an activation signal. In slc-30a9-deficient neurons, misshapen mitochondria show reduced distribution in axons and dendrites, providing a potential mechanism for the Birk-Landau-Perez cerebrorenal syndrome where an SLC30A9 mutation was found.


Assuntos
Proteínas de Transporte de Cátions/farmacologia , Proteínas de Ciclo Celular/farmacologia , Mitocôndrias/metabolismo , Fatores de Transcrição/farmacologia , Zinco/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular/genética , Dendritos/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HeLa , Homeostase , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mutação , Espermatozoides/fisiologia , Fatores de Transcrição/genética
2.
Biochem Biophys Res Commun ; 634: 175-181, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36244116

RESUMO

Oxygen is essential for aerobic organisms, but generates reactive oxygen species (ROS), which can cause cellular dysfunction by damaging cellular molecules. Many genes are involved in the regulation of ROS; however, much attention has not focused on them. To identify these genes, we screened for mutants with an altered sensitivity to oxidative stress in the nematode Caenorhabditis elegans. We isolated a novel mutant, oxy-7(qa5004) which showed an increased sensitivity to ROS in C. elegans. oxy-7 showed increased production of ROS and decreased longevity due to its increased oxidative stress. Genetic analysis revealed that oxy-7 has a causative mutation in Y71H2AM.9, a homologue of SLC30A9 which encodes a zinc transporter in mitochondria. We further showed that knockdown of human SLC30A9 caused increased ROS production in human cells as well. These results suggested an important role of mitochondrial zinc homeostasis in the regulation of ROS.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte de Cátions , Nematoides , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/genética , Longevidade/genética , Nematoides/metabolismo , Mutação , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética , Proteínas de Transporte de Cátions/genética
3.
Brain ; 140(4): 928-939, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334855

RESUMO

A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through defective function of this novel activity of SLC30A9 rather than by a defect in its previously described role in transcriptional activation of Wnt signalling.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Homeostase/genética , Deficiência Intelectual/genética , Nefropatias/genética , Proteínas Nucleares/genética , Zinco/metabolismo , Idade de Início , Árabes , Mapeamento Cromossômico , Consanguinidade , Citosol/metabolismo , Citosol/ultraestrutura , Feminino , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Lactente , Masculino , Mutação , Linhagem , Síndrome , Fatores de Transcrição , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA