Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 146(3): 806-822, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445400

RESUMO

Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.


Assuntos
Doença de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Humanos , Doença de Charcot-Marie-Tooth/genética , Atrofia Muscular Espinal/genética , Fenótipo , Testes Genéticos
2.
Neurobiol Dis ; 180: 106085, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933672

RESUMO

Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, p.Phe580Tyr/+), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.


Assuntos
Dineínas , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Dineínas/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Atrofia Muscular Espinal/genética , Tamanho do Órgão , Mutação/genética , Encéfalo/metabolismo , Células-Tronco
3.
Hum Mutat ; 36(3): 287-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512093

RESUMO

The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole-exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dineínas do Citoplasma/genética , Dineínas/metabolismo , Atrofia Muscular Espinal/genética , Mutação , Doença de Charcot-Marie-Tooth/fisiopatologia , Dineínas do Citoplasma/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Estrutura Terciária de Proteína/genética
4.
Hum Mutat ; 35(3): 298-302, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307404

RESUMO

DYNC1H1 encodes the heavy chain of cytoplasmic dynein 1, a motor protein complex implicated in retrograde axonal transport, neuronal migration, and other intracellular motility functions. Mutations in DYNC1H1 have been described in autosomal-dominant Charcot-Marie-Tooth type 2 and in families with distal spinal muscular atrophy (SMA) predominantly affecting the legs (SMA-LED). Recently, defects of cytoplasmic dynein 1 were also associated with a form of mental retardation and neuronal migration disorders. Here, we describe two unrelated patients presenting a combined phenotype of congenital motor neuron disease associated with focal areas of cortical malformation. In each patient, we identified a novel de novo mutation in DYNC1H1: c.3581A>G (p.Gln1194Arg) in one case and c.9142G>A (p.Glu3048Lys) in the other. The mutations lie in different domains of the dynein heavy chain, and are deleterious to protein function as indicated by assays for Golgi recovery after nocodazole washout in patient fibroblasts. Our results expand the set of pathological mutations in DYNC1H1, reinforce the role of cytoplasmic dynein in disorders of neuronal migration, and provide evidence for a syndrome including spinal nerve degeneration and brain developmental problems.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dineínas do Citoplasma/genética , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Criança , Humanos , Masculino , Fenótipo , Conformação Proteica , Adulto Jovem
5.
Neurobiol Dis ; 58: 220-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742762

RESUMO

Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.


Assuntos
Envelhecimento/patologia , Dineínas do Citoplasma/genética , Mitocôndrias/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Mutação/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Glucagon/sangue , Ácido Glutâmico/genética , Humanos , Insulina/sangue , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Transfecção
6.
Brain Dev ; 44(4): 294-298, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974950

RESUMO

BACKGROUND: Mutations in the cytoplasmic dynein 1 heavy chain gene (DYNC1H1) have been associated with spinal muscular atrophy with predominant lower extremity involvement (SMA-LED), Charcot-Marie-Tooth 2O (CMT2O) disease, cortical migration anomalies, and autosomal dominant mental retardation13. SMA-LED phenotype-related mutation was found in the DYNC1H1 gene in the patient who applied with the complaint of gait disturbance. METHODS: Pathogenic heterozygous c.1678G > A (p.Val560Met) mutation was detected in the DYNC1H1 gene by next-generation targeted gene analysis in the patient who had no phenotypic findings except delayed motor milestones, lumbar lordosis, and lower extremity muscle weakness. The patient's creatinine phosphokinase enzyme level and brain magnetic resonance imaging (MRI) were normal. Electromyography (EMG) had pure motor findings. CONCLUSION: It should be kept in mind that DYNC1H1 mutation, which we are accustomed to seeing with accompanying findings such as orthopedic and ocular dysmorphic findings, sensorineural EMG findings, and intellectual disability, can also observe with pure motor findings such as muscular dystrophy examination findings.


Assuntos
Dineínas do Citoplasma/genética , Atrofia Muscular Espinal , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Extremidade Inferior/fisiopatologia , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia
7.
J Neuromuscul Dis ; 9(6): 803-808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36057830

RESUMO

This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials (VEPs) and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataract, abnormal electroretinograms and VEPs are novel features of SMA-LED2.


Assuntos
Catarata , Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Gravidez , Feminino , Humanos , Potenciais Evocados Visuais , Atrofia Muscular Espinal/genética , Proteínas Associadas aos Microtúbulos , Fenótipo , Extremidade Inferior/patologia , Catarata/diagnóstico , Catarata/genética
8.
Acta Myol ; 35(2): 90-95, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28344438

RESUMO

Although the presence of cognitive deficits in Duchenne muscular dystrophy or myotonic dystrophy DM1 is well established in view of brain-specific expression of affected muscle proteins, in other neuromuscular disorders, such as congenital myopathies and limb-girdle muscular dystrophies, cognitive profiles are poorly defined. Also, there are limited characterization of the cognitive profile of children with congenital muscular dystrophies, notwithstanding the presence of cerebral abnormality in some forms, and in spinal muscular atrophies, with the exception of distal spinal muscular atrophy (such as the DYN1CH1- associated form). Starting from the Duchenne muscular dystrophy, which may be considered a kind of paradigm for the co-occurrence of learning disabilities in the contest of a progressive muscular involvement, the findings of neuropsychological (or cognitive) dysfunctions in several forms of neuromuscular diseases will be examined and reviewed.


Assuntos
Deficiência Intelectual/etiologia , Deficiências da Aprendizagem/etiologia , Distrofias Musculares/complicações , Humanos , Doenças Musculares/congênito , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular de Duchenne/complicações , Distrofia Miotônica/complicações , Atrofias Musculares Espinais da Infância/complicações
9.
Pediatr Neurol ; 52(2): 239-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484024

RESUMO

BACKGROUND: Molecular diagnosis of the distal spinal muscular atrophies or distal hereditary motor neuropathies remains challenging because of clinical and genetic heterogeneity. Next generation sequencing offers potential for identifying de novo mutations of causative genes in isolated cases. PATIENT DESCRIPTION: We present a 3.6-year-old girl with congenital scoliosis, equinovarus, and L5/S1 left hemivertebra who demonstrated delayed walking and lower extremities atrophy. She was negative for SMN1 deletion testing, and parents show no sign of disease. RESULTS: Whole exome sequencing of the affected girl showed a novel de novo heterozygous missense mutation c.1792C>T (p.Arg598Cys) in the tail domain of the DYNC1H1 gene encoding for cytoplasmic dynein heavy chain 1. The mutation changed a highly conserved amino acid and was absent from both parents. CONCLUSION: De novo mutations of DYNC1H1 have been found in individuals with autosomal dominant mental retardation with neuronal migration defects. Dominantly inherited mutations of DYNC1H1 have been reported to cause spinal muscular atrophy with predominance of lower extremity involvement and Charcot-Marie-Tooth type 2O. This is the first report of a de novoDYNC1H1 mutation associated with the spinal muscular atrophy with predominance of lower extremity phenotype with a spinal deformity (lumbar hemivertebrae). This case also demonstrates the power of next generation sequencing to discover de novo mutations on a genome-wide scale.


Assuntos
Dineínas do Citoplasma/genética , Deformidades Congênitas das Extremidades Inferiores/complicações , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Pré-Escolar , Feminino , Humanos
10.
Oxid Antioxid Med Sci ; 3(3): 161-173, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25866698

RESUMO

OBJECTIVE: There is increased evidence that oxidative stress is involved in exacerbations of neurodegenerative diseases and spinal muscular atrophies. METHODS: We examined changes in morphology and expression of antioxidant proteins and peroxiredoxins in motor neurons of lumbar spinal cord, dorsal root ganglion sensory neurons, macroglial cells and quadriceps muscles of newborn heterozygous Loa/+ mice ("legs at odd angles"), a mouse model for early onset of the spinal muscular atrophy with lower extremity predominance (SMA-LED). RESULTS: Our data indicate that newborn Loa-mice develop: neuroinflammation of the sensory and motor neurons; muscular inflammation with atrophic and denervated myofibers; increased expression of neuronal mitochondrial peroxiredoxins (Prxs) 3, 5 and cytoplasmic Prx 6 in motor and sensory neurons, myofibers, fibroblasts of perimysium and chondrocytes of cartilage; and decreased expression of Prx 6 by glial cells and in extracellular space surrounding motor neurons. CONCLUSION: The decrease in expression of Prx 6 by glial cells and extracellular Prx 6 secretion in early stages of the pathological conditions is consistent with the hypothesis that chronic oxidative stress may lead to neurodegeneration of motor neurons and exacerbation of the pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA