Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sensors (Basel) ; 20(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131503

RESUMO

During the last several years, according to the works published in research journals, many nanostructured materials have been tested as sensing materials for gas-sensing applications. This trend has been observed for both metal oxides as well as carbon-based nanomaterials. More recently, it has also been extended to other materials based on chalcogenides. The field of applications for these sensors is very wide, including air quality, industrial safety and medical diagnosis, using different transducing mechanisms. Therefore, in this Special Issue, we have put together recent advances in this area.

2.
Allergy ; 73(10): 2033-2045, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29729200

RESUMO

BACKGROUND: Airway epithelial injury is a crucial component of acute and severe asthma pathogenesis and a promising target for treatment of refractory asthma. However, the underlying mechanism of epithelial injury remains poorly explored. Although high levels of polyamines, mainly spermine, have been found in asthma and comorbidity, their role in airway epithelial injury and the cause of their altered levels in asthma have not been explored. METHODS: We measured key polyamine metabolic enzymes in lung samples from normal and asthmatic subjects and in mice with OVA-induced allergic airway inflammation (AAI). Polyamine metabolism was modulated using pharmacologic/genetic modulators. Epithelial stress and apoptosis were measured by TSLP levels and TUNEL assay, respectively. RESULTS: We found loss of the polyamine catabolic enzymes spermidine/spermine-N (1)-acetyltransferase-1 (SAT1) and spermine oxidase (SMOX) predominantly in bronchial epithelial cells (BECs) of human asthmatic lung samples and mice with AAI. In naïve mice, SAT1 or SMOX knockdown led to airway hyper-responsiveness, remodeling, and BEC apoptosis. Conversely, in mice with AAI, overexpression of either SAT1 or SMOX alleviated asthmatic features and reduced TSLP levels and BEC apoptosis. Similarly, while pharmacological induction of SAT1 and SMOX using the polyamine analogue bis(ethyl)norspermine (BENSPM) alleviated asthmatic features with reduced TSLP levels and BEC apoptosis, pharmacological inhibition of these enzymes using BERENIL or MDL72527, respectively, worsened them. Spermine accumulation in lungs correlated with BEC apoptosis, and spermine treatment caused apoptosis of human BEAS-2B cells in vitro. CONCLUSIONS: Spermine induces BEC injury. Induction of polyamine catabolism may represent a novel therapeutic approach for asthma via reversing BEC stress.


Assuntos
Asma/metabolismo , Epitélio/lesões , Poliaminas/metabolismo , Sistema Respiratório/patologia , Espermina/metabolismo , Animais , Apoptose , Asma/etiologia , Células Epiteliais/química , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Humanos , Pulmão/enzimologia , Camundongos , Espermina/efeitos adversos
3.
Mol Pharm ; 15(9): 4284-4295, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30040423

RESUMO

The Zika virus (ZIKV) is primarily transmitted via an infected mosquito bite, during sexual intercourse, or in utero mother to child transmission. When a fetus is infected, both neurological malformations and deficits in brain development are frequently manifested. As such, there is a need for vaccines or drugs that may be used to cure ZIKV infections. Metabolic pathways play a crucial role in cell differentiation and development. More importantly, polyamines play a key role in replication and translation of several RNA viruses, including ZIKV, Dengue virus, and Chikungunya virus. Here, we present polyamine analogues (BENSpm and PG11047) and their corresponding polymer prodrug derivatives for inhibiting ZIKV infection by intersecting with polyamine catabolism pathways. We tested the compounds against ZIKV African (MR766) and Asian (PRVABC59) strains in human kidney epithelial (Vero) and glioblastoma derived (SNB-19) cell lines. Our results demonstrate potent inhibition of ZIKV viral replication in both cell lines tested. This antiviral effect was mediated by the upregulation of two polyamine catabolic enzymes, spermine oxidase, and spermidine (SMOX)/spermine N1-acetyltransferase (SAT1) as apparent reduction of the ZIKV infection following heterologous expression of SMOX and SAT1. On the basis of these observations, we infer potential use of these polyamine analogues to treat ZIKV infections.


Assuntos
Poliaminas/metabolismo , Polímeros/farmacologia , Pró-Fármacos/farmacologia , Animais , Linhagem Celular Tumoral , Vírus Chikungunya/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Polímeros/química , Pró-Fármacos/química , Células Vero , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos
4.
Hepatol Res ; 48(12): 967-977, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29923661

RESUMO

AIM: The polyamine catabolic enzyme, spermine oxidase (SMOX) is upregulated in chronic inflammatory conditions and linked to increased reactive oxygen species and DNA damage in various forms of cancers. The present study aims to explore the expression pattern and biological function of SMOX in hepatocellular carcinoma (HCC). METHODS: We used quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry to examine SMOX expression in four HCC cell lines and 120 HCC clinical samples, and the clinical significance of SMOX was analyzed. The biological function of SMOX on HCC cells was detected both in vitro and in vivo. RESULTS: Results showed that SMOX was overexpressed in HCC cell lines and clinical HCC tissues. Moreover, SMOX expression levels were gradually increased in normal liver, chronic hepatitis, and HCC tissues. Increased SMOX expression was correlated with poor clinical features of HCC. Patients with positive SMOX expression in tumor tissues indicated worse overall survival (P = 0.008) and shorter relapse-free survival (P = 0.002). Knockdown of SMOX inhibited HCC cell proliferation, arrested cell cycle at S phase, and resulted in an increase of apoptosis. The in vivo study showed that inhibition of SMOX in HCC cells significantly repressed tumor growth in nude mice. Furthermore, we showed that SMOX might exert its function by regulating the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. CONCLUSION: Our data indicated that SMOX upregulation could be a critical oncogene in HCC and might serve as a valuable prognostic marker and potential therapeutic target for HCC.

5.
Dev Biol ; 417(1): 104-13, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27452629

RESUMO

In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-ß signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-ß signaling pathway, Smox is the canonical R-Smad of the TGF-ß/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-ß signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-ß/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing.


Assuntos
Baratas/embriologia , Drosophila melanogaster/embriologia , Metamorfose Biológica/fisiologia , Muda/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/genética , Proteínas Smad Reguladas por Receptor/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sensors (Basel) ; 16(11)2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27801881

RESUMO

Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods.


Assuntos
Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Óxidos/química , Tungstênio/química , Acetona/análise , Amônia/análise , Biomarcadores , Humanos , Sulfeto de Hidrogênio/análise , Limite de Detecção , Óxido Nítrico/análise , Tolueno/análise
7.
Adv Sci (Weinh) ; 11(20): e2302379, 2024 May.
Artigo em Italiano | MEDLINE | ID: mdl-38566431

RESUMO

The modification and recognition of 5-methylcytosine (m5C) are involved in the initiation and progression of various tumor types. However, the precise role and potential mechanism of Y-box-binding protein 1 (YBX1) in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, it is found that YBX1 is frequently upregulated in ESCC compared with matched nontumor tissues. Gain- and loss-of-function assays show that YBX1 promoted the proliferation and metastasis of ESCC cells both in vitro and in vivo. Functional studies revealed that NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a critical RNA methyltransferase that facilitates YBX1-mediated ESCC progression. Mechanistically, integrated analysis based on RNA immunoprecipitation sequencing (RIP-seq) and m5C methylated RNA immunoprecipitation and sequencing (MeRIP-seq) assays identified spermine oxidase (SMOX) as a target gene containing an m5C site in its coding sequence (CDS) region, which coincided well with the binding site of YBX1. Overexpression of SMOX-WT but not SMOX-Mut partially restored the proliferation and invasion ability of ESCC cells curbed by YBX1 knockdown. Moreover, YBX1 activated the mTORC1 signaling pathway by stabilizing SMOX mRNA. The study reveals that YBX1 promotes ESCC development by stabilizing SMOX mRNA in an m5C-dependent manner, thus providing a valuable therapeutic target for ESCC.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Estabilidade de RNA , Proteína 1 de Ligação a Y-Box , Humanos , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Estabilidade de RNA/genética , Camundongos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Modelos Animais de Doenças , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases
8.
Adv Sci (Weinh) ; : e2306912, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775007

RESUMO

Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.

9.
Int Immunopharmacol ; 126: 111183, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984250

RESUMO

Once an ischemic stroke occurs, reactive oxygen species (ROS) and oxidative stress degrade the tight connections between cerebral endothelial cells resulting in their damage. The expression of antioxidant genes may be enhanced, and ROS formation may be reduced following Nrf2 activation, which is associated with protection against ischemic stroke. Overexpression of spermine oxidase (Smox) in the neocortex led to increased H2O2 production. However, how Smox impacts the regulation of the blood-brain barrier (BBB) through antioxidants has not been examined yet. We conducted experiments both in the cell level and in the transient middle cerebral artery occlusion (tMCAO) model to evaluate the effect of Smox siRNA lentivirus (si-Smox) knockdown on BBB protection against ischemic stroke. Mice treated with si-Smox showed remarkably decreased BBB breakdown and reduced endothelial inflammation following stroke. The treatment with si-Smox significantly elevated the Bcl-2 to Bax ratio and decreased the production of cleaved caspase-3 in the tMCAO model. Further investigation revealed that the neuroprotective effect was the result of the antioxidant properties of si-Smox, which reduced oxidative stress and enhanced CD31+ cells in the peri-infarct cortical areas. Of significance, si-Smox activated Nrf2 in both bEnd.3 cells and tMCAO animals, and blocking Nrf2 with brusatol diminished the protective effects of si-Smox. The study findings suggest that si-Smox exerts neuroprotective effects and promotes angiogenesis by activating the Nrf2 pathway, thus decreasing oxidative stress and apoptosis caused by tMCAO. As a result, si-Smox may hold potential as a therapeutic candidate for preserving BBB integrity while treating ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
10.
Clin Res Hepatol Gastroenterol ; : 102429, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059608

RESUMO

Dysregulation of the polyamine metabolism is common in different cancer types. SMOX is upregulated in hepatocellular carcinoma (HCC) but the relationship between SMOX and liver inflammation and fibrosis, remain unclear. In this issue of Clin Res Hepatol Gastroenterol, Hu and colleagues find targeting SMOX can alleviate liver cancer progression.

11.
ACS Sens ; 9(1): 149-156, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38178551

RESUMO

Investigating the sensing mechanisms in semiconducting metal oxide (SMOx) gas sensors is essential for optimizing their performance across a wide range of potential applications. Despite significant progress in the field, there are still many gaps in comprehending the phenomenological processes occurring in one-dimensional (1D) nanostructures. This article presents the first insights into the conduction mechanism of chemoresistive gas sensors based on single-crystalline Sn3O4 nanobelts using the operando Kelvin Probe technique. From this approach, direct current (DC) electrical resistance and work function changes were simultaneously measured in different working conditions, and a correlation between the conductance and the surface band bending was established. Appropriate modeling was proposed, and the results revealed that the conduction mechanism in the single-crystalline one-dimensional nanostructures closely aligns with the behavior observed in single-crystalline epitaxial layers rather than in polycrystalline grains. Based on this assumption, relevant parameters were further estimated, including Debye length, concentration of free charge carriers, effective density of states in the conduction band, and position of the Fermi level. Overall, this study provides an effective contribution to understanding the role of surface chemistry in the transduction of the electrical signal generated from gas adsorption in single-crystalline one-dimensional nanostructures.


Assuntos
Nanoestruturas , Nanoestruturas/química , Óxidos/química , Eletricidade
12.
Front Cell Dev Biol ; 11: 1061570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755974

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma that includes fusion-positive (FP) and fusion-negative (FN) molecular subtypes. FP-RMS expresses PAX3-FOXO1 fusion protein and often shows dismal prognosis. FN-RMS shows cytogenetic abnormalities and frequently harbors RAS pathway mutations. Despite the multimodal heavy chemo and radiation therapeutic regimens, high risk metastatic/recurrent FN-RMS shows a 5-year survival less than 30% due to poor sensitivity to chemo-radiotherapy. Therefore, the identification of novel targets is needed. Polyamines (PAs) such as putrescine (PUT), spermidine (SPD) and spermine (SPM) are low-molecular-mass highly charged molecules whose intracellular levels are strictly modulated by specific enzymes. Among the latter, spermine oxidase (SMOX) regulates polyamine catabolism oxidizing SPM to SPD, which impacts cellular processes such as apoptosis and DNA damage response. Here we report that low SMOX levels are associated with a worse outcome in FN-RMS, but not in FP-RMS, patients. Consistently, SMOX expression is downregulated in FN-RMS cell lines as compared to normal myoblasts. Moreover, SMOX transcript levels are reduced FN-RMS cells differentiation, being indirectly downregulated by the muscle transcription factor MYOD. Noteworthy, forced expression of SMOX in two cell lines derived from high-risk FN-RMS: 1) reduces SPM and upregulates SPD levels; 2) induces G0/G1 cell cycle arrest followed by apoptosis; 3) impairs anchorage-independent and tumor spheroids growth; 4) inhibits cell migration; 5) increases γH2AX levels and foci formation indicative of DNA damage. In addition, forced expression of SMOX and irradiation synergize at activating ATM and DNA-PKCs, and at inducing γH2AX expression and foci formation, which suggests an enhancement in DNA damage response. Irradiated SMOX-overexpressing FN-RMS cells also show significant decrease in both colony formation capacity and spheroids growth with respect to single approaches. Thus, our results unveil a role for SMOX as inhibitor of tumorigenicity of FN-RMS cells in vitro. In conclusion, our in vitro results suggest that SMOX induction could be a potential combinatorial approach to sensitize FN-RMS to ionizing radiation and deserve further in-depth studies.

13.
Biomedicines ; 10(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35327428

RESUMO

Uncovering tumor markers of colorectal cancer is important for the early detection and prognosis of the patients. Spermine oxidase (SMOX) is upregulated in various cancers. The present study aims to explore the biologic function and expression patterns of SMOX in colorectal cancer (CRC), the third most common type of cancer worldwide. We used quantitative real-time PCR, Western blot, and in vitro functional studies in four CRC cell lines knocked down by SMOX siRNA and immunohistochemistry in 350 cases of CRC tissues. The results showed that SMOX was overexpressed in CRC cell lines and clinical samples. SMOX overexpression in tumor tissues was an independent prognostic factor, worsening overall survival (p = 0.001). The knock-down of SMOX inhibited CRC cell proliferation, invasion, and soft agar colony formation, uncovering its carcinogenic functions. This study indicated that SMOX overexpression could be an important oncogene in CRC and might serve as a valuable prognostic marker and potential therapeutic target for CRC.

14.
Front Biosci (Landmark Ed) ; 27(6): 176, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35748252

RESUMO

BACKGROUND: Drosophila Phosphatase of Regenerating Liver-1 (PRL-1) is the only homolog of the mammalian PRLs with which it shares high sequence and structural similarities. Whilst PRLs are most notable for their high expression in malignant cancers and related promotion of cancer progression, the specific biological functions of the PRLs remain largely elusive. METHODS: Here, using a gain-of-function approach, we found that PRL-1 functions during wing vein development in Drosophila melanogaster (Drosophila). Overexpression of Drosophila PRL-1 caused dose-dependent wing vein proliferation. RESULTS: Genetic screening of the main TGF-ß signaling factors, Mad and Smox, showed that the RNAi-mediated knockdown of Mad could alleviate the extra vein phenotype caused by overexpressed PRL-1 and lead to loss of the posterior section of longitudinal veins. However, knockdown of Smox resulted in an identical phenotype with or without the overexpression of Drosophila PRL-1. Clonal analyses revealed that overexpression of PRL-1 led to decreased expressions of activated phospho-Mad protein, as measured by immunostaining. Real-time PCR showed that the transcriptional levels of Smox were significantly increased upon overexpression of the Drosophila PRL-1 in wing discs, with a dose dependent effect. CONCLUSIONS: We propose that the main function of Drosophila PRL-1 in wing development is to affect the phospho-Mad levels and Smox transcriptional levels, therefore influencing the competitive balance for Medea between Mad and Smox. Our study demonstrates the novel role for Drosophila PRL-1 in regulating TGF-ß signaling to influence wing vein formation which may also provide insight into the understanding of the relationship between PRLs and TGF-ß signaling in mammals.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
15.
Biomolecules ; 12(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204705

RESUMO

Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.


Assuntos
Astrócitos , Epilepsia , Animais , Astrócitos/patologia , Epilepsia/genética , Epilepsia/patologia , Mamíferos , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia , Poliamina Oxidase
16.
Front Pharmacol ; 13: 929836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353478

RESUMO

Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, ß-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.

17.
Cell Rep ; 41(12): 111861, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543136

RESUMO

Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation.


Assuntos
Atrofia Muscular , Transcriptoma , Humanos , Atrofia Muscular/metabolismo , Transcriptoma/genética , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Poliaminas/metabolismo
18.
Biomolecules ; 11(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572487

RESUMO

BACKGROUND: In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. METHODS: To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. RESULTS: The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. CONCLUSIONS: Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.


Assuntos
Gliose/metabolismo , Gliose/patologia , Poliaminas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Cálcio/metabolismo , Catalase/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Receptores de AMPA/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Espermina/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Vimentina/metabolismo , Poliamina Oxidase
19.
Front Pharmacol ; 12: 728368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393804

RESUMO

Background: Although multiple metabolic pathways are involved in the initiation, progression, and therapy of lung adenocarcinoma (LUAD), the tumor microenvironment (TME) for immune cell infiltration that is regulated by metabolic enzymes has not yet been characterized. Methods: 517 LUAD samples and 59 non-tumor samples were obtained from The Cancer Genome Atlas (TCGA) database as the training cohort. Kaplan-Meier analysis and Univariate Cox analysis were applied to screen the candidate metabolic enzymes for their role in relation to survival rate in LUAD patients. A prognostic metabolic enzyme signature, termed the metabolic gene risk score (MGRS), was established based on multivariate Cox proportional hazards regression analysis and was verified in an independent test cohort, GSE31210. In addition, we analyzed the immune cell infiltration characteristics in patients grouped by their Risk Score. Furthermore, the prognostic value of these four enzymes was verified in another independent cohort by immunohistochemistry and an optimized model of the metabolic-immune protein risk score (MIPRS) was constructed. Results: The MGRS model comprising 4 genes (TYMS, NME4, LDHA, and SMOX) was developed to classify patients into high-risk and low-risk groups. Patients with a high-risk score had a poor prognosis and exhibited activated carbon and nucleotide metabolism, both of which were associated with changes to TME immune cell infiltration characteristics. In addition, the optimized MIPRS model showed more accurate predictive power in prognosis of LUAD. Conclusion: Our study revealed an integrated metabolic enzyme signature as a reliable prognostic tool to accurately predict the prognosis of LUAD.

20.
Toxicol Sci ; 168(2): 381-393, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576531

RESUMO

Spermine oxidase (Smox) is a member of the polyamine oxidases and has been demonstrated to be involved in ischemic brain damage. In this study, we found that Smox expression was increased in a rat middle cerebral artery occlusion (MCAO) model and in cultured primary neurons after oxygen-glucose deprivation and reoxygenation (OGD/R). Smox downregulation by the adeno-associated virus RNA interference system significantly reduced the MCAO-induced brain infarct volume and neurological deficits and decreased neuronal apoptosis and inflammatory reactions. In addition, significant microglial activation and increased IL-6 and TNF-α expression were observed in microglia treated with supernatant from neurons after OGD/R. However, a significant reduction in microglial activation as well as IL-6 and TNF-α expression was observed in microglia treated with supernatant from Smox downregulated neurons after OGD/R. Therefore, the results indicated that Smox is an important mediator of cerebral ischemia injury and may be a therapeutic target for cerebral ischemia patients.


Assuntos
Isquemia Encefálica/prevenção & controle , Encefalite/prevenção & controle , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/genética , Isquemia Encefálica/enzimologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Encefalite/enzimologia , Infarto da Artéria Cerebral Média , Interleucina-6/genética , Masculino , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Fator de Necrose Tumoral alfa/genética , Poliamina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA