Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
EMBO Rep ; 24(6): e56282, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37009826

RESUMO

Human microproteins encoded by long non-coding RNAs (lncRNA) have been increasingly discovered, however, complete functional characterization of these emerging proteins is scattered. Here, we show that LINC00493-encoded SMIM26, an understudied microprotein localized in mitochondria, is tendentiously downregulated in clear cell renal cell carcinoma (ccRCC) and correlated with poor overall survival. LINC00493 is recognized by RNA-binding protein PABPC4 and transferred to ribosomes for translation of a 95-amino-acid protein SMIM26. SMIM26, but not LINC00493, suppresses ccRCC growth and metastatic lung colonization by interacting with acylglycerol kinase (AGK) and glutathione transport regulator SLC25A11 via its N-terminus. This interaction increases the mitochondrial localization of AGK and subsequently inhibits AGK-mediated AKT phosphorylation. Moreover, the formation of the SMIM26-AGK-SCL25A11 complex maintains mitochondrial glutathione import and respiratory efficiency, which is abrogated by AGK overexpression or SLC25A11 knockdown. This study functionally characterizes the LINC00493-encoded microprotein SMIM26 and establishes its anti-metastatic role in ccRCC, and therefore illuminates the importance of hidden proteins in human cancers.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Proliferação de Células/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Micropeptídeos
2.
Biol Reprod ; 110(1): 154-168, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37815939

RESUMO

Phoenixin is a neuropeptide with a well-established role in the central regulation of reproductive processes; however, knowledge regarding its role in the ovary is limited. One of the main active phoenixin isoforms is phoenixin-14, which acts through G protein-coupled receptor 173. Our research hypothesis was that phoenixin-14 is expressed in porcine corpus luteum and exerts luteotropic action by affecting the endocrine function of luteal cells through G protein-coupled receptor 173 and protein kinase signaling. Luteal cells were cultured to investigate the effect of phoenixin-14 (1-1000 nM) on endocrine function. We showed that phoenixin-14 and G protein-coupled receptor 173 are produced locally in porcine corpus luteum and their levels change during the estrous cycle. We detected phoenixin-14 immunostaining in the cytoplasm and G protein-coupled receptor 173 in the cell membrane. Plasma phoenixin levels were highest during the early luteal phase. Interestingly, insulin, luteinizing hormone, progesterone, and prostaglandins decreased phoenixin-14 levels in luteal cells. Phoenixin-14 increased progesterone, estradiol, and prostaglandin E2 secretion, but decreased prostaglandin F2α, upregulated the expression of steroidogenic enzymes, and downregulated receptors for luteinizing hormone and prostaglandin. Also, phoenixin-14 increased the expression of G protein-coupled receptor 173 and the phosphorylation of extracellular signal-regulated kinase 1/2, protein kinase B, inhibited the phosphorylation of protein kinase A, and had mixed effect on AMP-activated protein kinase alpha and protein kinase C. G protein-coupled receptor 173 and extracellular signal-regulated kinase 1/2 mediated the effect of phoenixin-14 on endocrine function of luteal cells. Our results suggest that phoenixin is produced by porcine luteal cells and can be a new regulator of their function.


Assuntos
Células Lúteas , Feminino , Animais , Suínos , Células Lúteas/metabolismo , Progesterona/farmacologia , Corpo Lúteo/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Biochem Biophys Res Commun ; 646: 44-49, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36706704

RESUMO

AIM: Endometriosis is one of the most common gynecologic diseases in women of reproductive age. The pathophysiology of endometriosis is still not fully understood. Phoenixin (PNX-14) is a newly discovered neuropeptide that regulates the hypothalamo-pituitary-gonadal (HPG) axis and reproductive functions. Recently, we reported that PNX-14, its precursor protein and receptor were expressed in human endometrium. Moreover, PNX-14 serum levels in endometriosis were reduced. This study aimed to evaluate the in vitro biological functions of physiological PNX-14 concentrations on the ectopic endometrium Z12 cells. METHODS: The proliferation and migration of Z12 cells were assessed using the xCELLigence® RTCA DP system following 72 h of stimulation with 0.05 and 0.2 nM of PNX-14. GPR173 and small integral membrane protein 20 (SMIM20) gene expression was evaluated using quantitative polymerase chain reaction (qPCR) and the protein levels of GPR173 were analyzed using Western blot analysis. RESULTS: PNX-14 at the concentration observed in the serum of patients with endometriosis (0.05 nM) reduced GPR173 and increased SMIM20 expression, while protein levels of GPR173 remained unchanged. Cell proliferation was increased by the 0.02 nM PNX-14- the concentration found in healthy subjects. The 0.2 nM of PNX-14 decreased SMIM20 expression with no change to GPR173 expression and reduced ectopic epithelial cell proliferation during the first 5 h after stimulation. However, at 72 h, the proliferation increased. CONCLUSIONS: This study shows that PNX-14 at endometriosis specific concentration desensitized ectopic epithelium to PNX-14, and increased the expression of SMIM20 to restore the physiological levels of PNX-14.


Assuntos
Endometriose , Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Feminino , Células Epiteliais/metabolismo , Proliferação de Células
4.
Biochem Biophys Res Commun ; 604: 57-62, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35290761

RESUMO

Small integral membrane protein 10 like 1 (SMIM10L1) was identified by RNA sequencing as the most significantly downregulated gene in Phosphatase and Tensin Homologue (PTEN) knockdown adipose progenitor cells (APCs). PTEN is a tumor suppressor that antagonizes the growth promoting Phosphoinositide 3-kinase (PI3K)/AKT/mechanistic Target of Rapamycin (mTOR) cascade. Diseases caused by germline pathogenic variants in PTEN are summarized as PTEN Hamartoma Tumor Syndrome (PHTS). This overgrowth syndrome is associated with lipoma formation, especially in pediatric patients. The mechanisms underlying this adipose tissue dysfunction remain elusive. We observed that SMIM10L1 downregulation in APCs led to an enhanced adipocyte differentiation in two- and three-dimensional cell culture and increased expression of adipogenesis markers. Furthermore, SMIM10L1 knockdown cells showed a decreased expression of PTEN, pointing to a mutual crosstalk between PTEN and SMIM10L1. In line with these observations, SMIM10L1 knockdown cells showed increased activation of PI3K/AKT/mTOR signaling and concomitantly increased expression of the adipogenic transcription factor SREBP1. We computationally predicted an α-helical structure and membrane association of SMIM10L1. These results support a specific role for SMIM10L1 in regulating adipogenesis, potentially by increasing PI3K/AKT/mTOR signaling, which might be conducive to lipoma formation in pediatric patients with PHTS.


Assuntos
Síndrome do Hamartoma Múltiplo , Lipoma , Criança , Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Regulação para Baixo , Síndrome do Hamartoma Múltiplo/genética , Lipoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
J Transl Med ; 20(1): 612, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550462

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients with normal karyotype (NK-AML) have significant variabilities in outcomes. The European Leukemia Net stratification system and some prognostic models have been used to evaluate risk stratification. However, these common standards still have some limitations. The biological functions and mechanisms of Small Integral Membrane Protein 3 (SMIM3) have seldomly been investigated. To this date, the prognostic value of SMIM3 in AML has not been reported. This study aimed to explore the clinical significance, biological effects and molecular mechanisms of SMIM3 in AML. METHODS: RT-qPCR was applied to detect the expression level of SMIM3 in bone marrow specimens from 236 newly diagnosed adult AML patients and 23 healthy volunteers. AML cell lines, Kasumi-1 and THP-1, were used for lentiviral transfection. CCK8 and colony formation assays were used to detect cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to explore relevant signaling pathways. The biological functions of SMIM3 in vivo were validated by xenograft tumor mouse model. Survival rate was evaluated by Log-Rank test and Kaplan-Meier. Cox regression model was used to analyze multivariate analysis. The correlations between SMIM3 and drug resistance were also explored. RESULTS: Through multiple datasets and our clinical group, SMIM3 was shown to be significantly upregulated in adult AML compared to healthy subjects. SMIM3 overexpression conferred a worse prognosis and was identified as an independent prognostic factor in 95 adult NK-AML patients. Knockdown of SMIM3 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. The reduced SMIM3 expression significantly suppressed tumor growth in the xenograft mouse model. Western blot analysis showed downregulation of p-PI3K and p-AKT in SMIM3-knockdown AML cell lines. SMIM3 may also be associated with some PI3K-AKT and first-line targeted drugs. CONCLUSIONS: SMIM3 was highly expressed in adult AML, and such high-level expression of SMIM3 was associated with a poor prognosis in adult AML. Knockdown of SMIM3 inhibited the proliferation of AML through regulation of the PI3K-AKT signaling pathway. SMIM3 may serve as a potential prognostic marker and a therapeutic target for AML in the future.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo/genética , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Prognóstico , Proliferação de Células/genética , Apoptose/genética , Cariótipo , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445188

RESUMO

The amount of human long noncoding RNA (lncRNA) genes is comparable to protein-coding; however, only a small number of lncRNAs are functionally annotated. Previously, it was shown that lncRNAs can participate in many key cellular processes, including regulation of gene expression at transcriptional and post-transcriptional levels. The lncRNA genes can contain small open reading frames (sORFs), and recent studies demonstrated that some of the resulting short proteins could play an important biological role. In the present study, we investigate the widely expressed lncRNA LINC00493. We determine the structure of the LINC00493 transcript, its cell localization and influence on cell physiology. Our data demonstrate that LINC00493 has an influence on cell viability in a cell-type-specific manner. Furthermore, it was recently shown that LINC00493 has a sORF that is translated into small protein SMIM26. The results of our knockdown and overexpression experiments suggest that both LINC00493/SMIM26 transcript and protein affect cell viability, but in the opposite manner.


Assuntos
RNA Longo não Codificante/genética , RNA Mensageiro/genética , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fases de Leitura Aberta
7.
J Hepatol ; 73(5): 1155-1169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32461121

RESUMO

BACKGROUND & AIMS: Growing evidence shows that some non-coding RNAs (ncRNAs) contain small open reading frames (smORFs) that are translated into short peptides. Herein, we aimed to determine where and how these short peptides might promote hepatocellular carcinoma (HCC) development. METHODS: We performed an RNA-immunoprecipitation followed by high-throughput sequencing (RIP-seq) assay with an antibody against ribosomal protein S6 (RPS6) on 4 cancer cell lines. Focusing on 1 long non-coding RNA (lncRNA), LINC00998, we used qPCR and public databases to evaluate its expression level in patients with HCC. Special vectors were constructed to confirm its coding potential. We also explored the function and mechanism of LINC00998-encoded peptide in tumor growth and metastasis. RESULTS: We discovered that many lncRNAs bind to RPS6 in cancer cells. One of these lncRNAs, LINC00998, encoded a small endogenous peptide, termed SMIM30. SMIM30, rather than the RNA itself, promoted HCC tumorigenesis by modulating cell proliferation and migration, and its level was correlated with poor survival in patients with HCC. Furthermore, SMIM30 was transcribed by c-Myc and then drove the membrane anchoring of the non-receptor tyrosine kinases SRC/YES1. Moreover, the downstream MAPK signaling pathway was activated by SRC/YES1. CONCLUSIONS: Our results not only unravel a new mechanism of HCC tumorigenesis promoted by ncRNA-encoded peptides, but also suggest that these peptides can serve as a new target for HCC cancer therapy and a new biomarker for HCC diagnosis and prognosis. LAY SUMMARY: Very little is known about how peptides activate signaling pathways that play a crucial role in diseases such as cancer. Specifically, we reported on a conserved peptide encoded by LINC00998, SMIM30. This peptide promoted the tumorigenesis of hepatocellular carcinoma (HCC) by modulating cell proliferation and migration. Of note, it bound the non-receptor tyrosine kinases, SRC/YES1, to drive their membrane anchoring and phosphorylation, activating the downstream MAPK signaling pathway. Our work not only unravels a new mechanism of HCC tumorigenesis promoted by peptides, but also demonstrates how the peptide works to activate a signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-yes/metabolismo , RNA Longo não Codificante/metabolismo , Quinases da Família src/metabolismo , Animais , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/metabolismo , Prognóstico
8.
Biochem Cell Biol ; 98(6): 709-718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33210543

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, especially in developing countries. Although advances in surgical procedures and targeted medicine have improved the overall survival of patients with HCC, the prognosis is poor. Hence, there is a need to identify novel therapeutic targets for HCC. Here, we report that the expression of RP11-909N17.2, a novel, long, noncoding RNA (lncRNA), is dysregulated in patients with HCC and cell lines. Additionally, this study demonstrated that RP11-909N17.2 facilitates the proliferation and invasion of HCC cells by binding to miRNA-767-3p, a tumor-suppressive microRNA (miRNA). Small integral membrane protein 7 (SMIM7) was identified as the downstream target of miRNA-767-3p. The expression of SMIM7 was upregulated in HCC clinical samples and cell lines. Moreover, SMIM7 was involved in the proliferation and invasion of HCC cells. Furthermore, SMIM7 inhibited the apoptosis of HCC cells, which indicated the oncogenic role of SMIM7 in HCC. The findings of this study suggest that the lncRNA-miRNA-mRNA regulatory axis, which regulates the pathogenesis of HCC, can be a potential novel diagnostic and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , MicroRNAs/biossíntese , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Neoplásico/genética
9.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R917-R928, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208925

RESUMO

Phoenixin is a 20-amino acid peptide (PNX-20) cleaved from the small integral membrane protein 20 (SMIM20), with multiple biological roles in mammals. However, its role in nonmammalian vertebrates is poorly understood. This research aimed to determine whether PNX-20 influences feeding and metabolism in zebrafish. The mRNAs encoding SMIM20 and its putative receptor, super conserved receptor expressed in brain 3 (SREB3), are present in both central and peripheral tissues of zebrafish. Immunohistochemical analysis confirmed the presence of PNX-like immunoreactivity in the gut and in zebrafish liver (ZFL) cell line. We also found that short-term fasting (7 days) significantly decreased smim20 mRNA expression in the brain, gut, liver, gonads, and muscle, which suggests a role for PNX-20 in food intake regulation. Indeed, single intraperitoneal injection of 1,000 ng/g body wt PNX-20 reduced feeding in both male and female zebrafish, likely in part by enhancing hypothalamic cart and reducing hypothalamic/gut preproghrelin mRNAs. Furthermore, the present results demonstrated that PNX-20 modulates the expression of genes involved in glucose transport and metabolism in ZFL cells. In general terms, such PNX-induced modulation of gene expression was characterized by the upregulation of glycolytic genes and the downregulation of gluconeogenic genes. A kinetic study of the ATP production rate from both glycolytic and mitochondrial pathways demonstrated that PNX-20-treated ZFL cells exhibited significantly higher ATP production rate associated with glycolysis than control cells. This confirms a positive role for PNX-20 on glycolysis. Together, these results indicate that PNX-20 is an anorexigen with important metabolic roles in zebrafish.


Assuntos
Depressores do Apetite/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Proteínas de Homeodomínio/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas de Peixe-Zebra/farmacologia , Peixe-Zebra/metabolismo , Animais , Regulação do Apetite/efeitos dos fármacos , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Glicólise/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171667

RESUMO

Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.


Assuntos
Neuropeptídeos/fisiologia , Hormônios Peptídicos/fisiologia , Reprodução/fisiologia , Sequência de Aminoácidos , Animais , Ansiedade/fisiopatologia , Regulação do Apetite/genética , Regulação do Apetite/fisiologia , Sistema Nervoso Central/fisiologia , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Masculino , Memória/fisiologia , Neuropeptídeos/genética , Fármacos Neuroprotetores/metabolismo , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Reprodução/genética , Sede/fisiologia , Distribuição Tecidual
11.
Vox Sang ; 110(2): 172-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26382919

RESUMO

BACKGROUND AND OBJECTIVES: The Vel blood group antigen is a poorly characterized high-prevalence antigen. Until now, anti-Vel antibodies have been observed in only alloimmunized Vel-negative individuals. In this study, we aimed to establish a human hybridoma cell line secreting the first anti-Vel monoclonal antibody (mAb), clone SpG213Dc. MATERIALS AND METHODS: Peripheral blood lymphocytes from a French Vel-negative woman with anti-Vel in her plasma were transformed with Epstein-Barr virus and then hybridized with the myeloma cell line Sp2/O-Ag14 using the polyethylene glycol (PEG) method. A specific anti-Vel mAb was successfully produced and was extensively characterized by serological, flow cytometry and Western blot analyses. RESULTS: One human anti-Vel-secreting clone was produced and the secreted anti-Vel mAb (SpG213Dc) was examined. The specificity of the SpG213Dc mAb was assessed by its reactivity against a panel of nine genotyped RBCs including, respectively, three Vel-negative and six Vel-positive (three wild-type homozygous and three heterozygous) samples using flow cytometry method. Vel-positive RBCs were specifically stained and were subsequently used to perform Western blot and immunoprecipitation analysis of the Vel antigen. CONCLUSION: Serological characterization of the new monoclonal anti-Vel SpG213Dc showed a heterogeneous level of expression of the Vel antigen on the different RBCs. Our results suggest that the mAb SpG213Dc can be reliably used as a blood grouping reagent, thus allowing the mass-scale phenotyping of blood donors to strengthen rare blood banks with Vel-negative RBC units.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Proteínas de Membrana/imunologia , Feminino , Humanos
12.
Transfus Med Hemother ; 42(6): 356-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26732700

RESUMO

BACKGROUND: The SMIM1 protein carries the Vel blood group antigen, and homozygosity for a 17 bp deletion in the coding region of the SMIM1 gene represents the molecular basis of the Vel- blood group phenotype. We developed PCR-based methods for typing the SMIM1 17 bp (64-80del) gene deletion and performed a molecular screening for the Vel- blood type in German blood donors. METHODS: For SMIM1 genotyping, TaqMan-PCR and PCR-SSP methods were developed and validated using reference samples. Both methods were used for screening of donors with blood group O from southwestern Germany. Heterozygotes and homozygotes for the SMIM1 64-80del allele were serologically typed for the Vel blood group antigen. In addition, the rs1175550 SNP in SMIM1 was typed and correlated to the results of the phenotyping. RESULTS: Both genotyping methods, TaqMan-PCR and PCR-SSP, represent reliable methods for the detection of the SMIM1 64-80del allele. Screening of 10,598 blood group O donors revealed 5 individuals homozygous for the deletional allele. They were confirmed Vel- by serological typing. Heterozygotes for the 64-80del allele showed different antigen expressions ranging from very weak to regular positive. CONCLUSION: Molecular screening of blood donors for the Vel- blood type is feasible and avoids the limitations of serological typing which might show false-negative results with heterozygous individuals. The identification of Vel- blood donors significantly contributes to the adequate blood supply of patients with anti-Vel.

13.
Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906141

RESUMO

BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.

14.
Transl Cancer Res ; 12(10): 2754-2763, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969370

RESUMO

Background: Glioblastoma multiforme (GBM) is the most prevalent fatal central nervous system tumor. Notably, the survival rates after surgical intervention and active radiotherapy are not optimistic. Therefore, identifying new GBM-related biomarkers is a top priority in current research. Methods: Transcriptome and clinical information of patients with GBM were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. According to the SMIM20 expression levels, the samples were divided into high- and low-expression groups and used for differential expression gene (DEG) analysis. Functional enrichment analyses, including Gene Ontology (GO), gene set enrichment analysis, and immune cell infiltration, were performed on SMIM20-related DEGs. Subsequently, univariate and multivariate Cox regression analyses were performed to screen the risk factors associated with the poor prognosis of SMIM20, and the clinical significance of SMIM20 in GBM was explored by constructing a prognostic nomogram. Results: In total, 156 DEGs were screened, of which 131 were upregulated and 25 were downregulated. Kaplan-Meier analysis revealed that the total survival time of the SMIM20 high expression group was significantly lower than that of the SMIM20 low-expression group. Finally, the nomogram map had good predictive value for evaluating GBM prognosis of patients. Conclusions: High expression of SMIM20 is associated with poor outcomes in GBM. The DEGs and pathways identified in this study reveal potential molecular mechanisms underlying the occurrence and progression of GBM. Our study identifies potential new biomarkers and therapeutic targets for the treatment of GBM.

15.
Mol Oncol ; 17(5): 901-916, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495128

RESUMO

The biological functions of short open reading frame (sORF)-encoded micropeptides remain largely unknown. Here, we report that LINC00998, a previously annotated lncRNA, was upregulated in multiple cancer types and the sORF on LINC00998 encoded a micropeptide named SMIM30. SMIM30 was localized in the membranes of the endoplasmic reticulum (ER) and mitochondria. Silencing SMIM30 inhibited the proliferation of hepatoma cells in vitro and suppressed the growth of tumor xenografts and N-nitrosodiethylamine-induced hepatoma. Overexpression of the 5'UTR-sORF sequence of LINC00998, encoding wild-type SMIM30, enhanced tumor cell growth, but this was abolished when a premature stop codon was introduced into the sORF via single-base deletion. Gain- and loss-of-function studies revealed that SMIM30 peptide but not LINC00998 reduced cytosolic calcium level, increased CDK4, cyclin E2, phosphorylated-Rb and E2F1, and promoted the G1/S phase transition and cell proliferation. The effect of SMIM30 silencing was attenuated by a calcium chelator or the agonist of sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. These findings suggest a novel function of micropeptide SMIM30 in promoting G1/S transition and cell proliferation by enhancing SERCA activity and reducing cytosolic calcium level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Ciclo Celular , Micropeptídeos
16.
J Biomol Struct Dyn ; : 1-16, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878583

RESUMO

We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.

17.
Growth Horm IGF Res ; 63: 101456, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305530

RESUMO

OBJECTIVE: Phoenixin-20 (Pnx-20) is a bioactive peptide with endocrine-like actions in vertebrates. Recent studies suggest Pnx-20 promotes growth hormone/insulin-like growth factors (Gh/Igf) axis, an important endocrine regulator of growth in mammals and fish. DESIGN: In this research, we determined whether Pnx-20 affects the different members of the Igf family, its binding proteins and receptors (Igf-system) in zebrafish liver and muscle. RESULTS: In vivo administration of Pnx-20 downregulated igfs, igf receptors (igfrs) and igf binding protein (igfbp) 5 mRNA expression in the liver of male and female zebrafish at both 1 and 6 h post-intraperitoneal (IP) injection. Interestingly, this effect occurred at a relatively earlier timepoint in female zebrafish suggesting sex-specific differences in Pnx-20 action. Besides, either 6 or 24 h in vitro incubations with Pnx-20 downregulated the expression of all igfs, igfrs and igfbp5 mRNAs (except igf2a) analyzed in a zebrafish liver cell (ZFL) line. Moreover, siRNA-mediated knockdown of Pnx-20 upregulated all Igf-system mRNAs analyzed in ZFL cells. Together, these results (both in vivo and in vitro) revealed a general suppressive action for both endogenous and exogenous Pnx-20 on the hepatic Igf-system of zebrafish. In contrast, a general sex-specific upregulation of the Igf-system mRNAs analyzed was found in the muscle of Pnx-20 injected fish. Future research should explore the sex- and time-differences observed in the present study. CONCLUSIONS: Collectively, this research shows that Pnx-20 is a tissue-specific regulator of the liver (suppressor) and muscle (stimulant) Igf signaling in both male and female zebrafish.


Assuntos
Somatomedinas , Peixe-Zebra , Animais , Feminino , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Músculos/metabolismo , Hormônios Peptídicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Somatomedina/metabolismo , Somatomedinas/genética , Somatomedinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Discov Oncol ; 13(1): 28, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35445848

RESUMO

Mexico City has one of the highest incidences of acute lymphoblastic leukemia (ALL) globally, with patients showing low survival, and high relapse rates. To gain more insight into the molecular features of B-ALL in Mexican children, we isolated CD10 + /CD19 + precursor B lymphoblasts from four bone marrow and nine peripheral blood samples of B-ALL patients using a fluorescence-activated cell sorting protocol. The global gene expression profile (BM vs PB) revealed 136 differentially expressed genes; 62 were upregulated (45.6%) and 74 were downregulated (54.4%). Pearson's correlation coefficient was calculated to determine the similarity between pre-B lymphoblast populations. We selected 26 highly significant genes and validated 21 by RT-qPCR (CNN3, STON2, CALN1, RUNX2, GADD45A, CDC45, CDC20, PLK1, AIDA, HCK, LY86, GPR65, PIK3CG, LILRB2, IL7R, TCL1A, DOCK1, HIST1H3G, PTPN14, CD72, and NT5E). The gene set enrichment analysis of the total expression matrix and the ingenuity pathway analysis of the 136 differentially expressed genes showed that the cell cycle was altered in the bone marrow with four overexpressed genes (PLK1, CDC20, CDC45, and GADD45A) and a low expression of IL7R and PIK3CG, which are involved in B cell differentiation. A comparative bioinformatics analysis of 15 bone marrow and 10 peripheral blood samples from Hispanic B-ALL patients collected by the TARGET program, corroborated the genes observed, except for PIK3CG. We conclude the Mexican and the Hispanic B-ALL patients studied present common driver alterations and histotype-specific mutations that could facilitate risk stratification and diagnostic accuracy and serve as potential therapeutic targets.

19.
Expert Rev Anticancer Ther ; 22(8): 875-885, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894677

RESUMO

OBJECTIVES: Acute myeloid leukemia (AML) is a common hematologic malignancy with high heterogeneity and poor prognosis. Although long non-coding RNAs (lncRNAs) have been used as biomarkers for tumors, the clinical relevance of numerous lncRNAs in AML remains to be investigated. RESEARCH DESIGN AND METHODS: Differentially expressed lncRNAs between AML and normal peripheral blood samples were identified using DESeq2. Pan-cancer analysis was performed by GEPIA tool. Kaplan-Meier survival curve was applied for prognosis analysis. KEGG pathway analysis and GSEA were used for functional enrichment. The ceRNA network was constructed by GDCRNAtools. RESULTS: Lnc-SMIM20-1 was most highly expressed in AML and up-regulated in the TCGA-AML cohort compared to normal tissues. Patients with high expression of Lnc-SMIM20-1 had poor overall prognosis both in the TCGA adult AML cohort and the TARGET pediatric AML cohort, no matter whether they were treated with chemotherapy or allo-HSCT. Lnc-SMIM20-1 might participate in cancer-associated signaling pathways and immune-related signaling pathways by interacting with four microRNAs and 20 mRNAs. CONCLUSION: Lnc-SMIM20-1 was up-regulated in AML acting as a stable poor prognostic factor. The prognostic impact of Lnc-SMIM20-1 cannot be overcome by allo-HSCT. Our findings provide insight into the clinical relevance of Lnc-SMIM20-1 in AML; aiming to progress the development of novel therapeutics.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Membrana/metabolismo , MicroRNAs , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante , Adulto , Criança , Humanos , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Mensageiro/genética
20.
Cell Rep ; 40(7): 111204, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977508

RESUMO

Electron transport chain (ETC) biogenesis is tightly coupled to energy levels and availability of ETC subunits. Complex III (CIII), controlling ubiquinol:ubiquinone ratio in ETC, is an attractive node for modulating ETC levels during metabolic stress. Here, we report the discovery of mammalian Co-ordinator of mitochondrial CYTB (COM) complexes that regulate the stepwise CIII biogenesis in response to nutrient and nuclear-encoded ETC subunit availability. The COMA complex, consisting of UQCC1/2 and membrane anchor C16ORF91, facilitates translation of CIII enzymatic core subunit CYTB. Subsequently, microproteins SMIM4 and BRAWNIN together with COMA subunits form the COMB complex to stabilize nascent CYTB. Finally, UQCC3-containing COMC facilitates CYTB hemylation and association with downstream CIII subunits. Furthermore, when nuclear CIII subunits are limiting, COMB is required to chaperone nascent CYTB to prevent OXPHOS collapse. Our studies highlight CYTB synthesis as a key regulatory node of ETC biogenesis and uncover the roles of microproteins in maintaining mitochondrial homeostasis.


Assuntos
Sinais (Psicologia) , Mitocôndrias , Animais , Transporte de Elétrons , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA