Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(9): 2706-2732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740576

RESUMO

INTRODUCTION: There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE: To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS: Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS: Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION: 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Humanos , Neoplasias da Mama/diagnóstico por imagem , Medicina Nuclear , Feminino , Sociedades Médicas
2.
Eur J Nucl Med Mol Imaging ; 50(9): 2830-2845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246997

RESUMO

Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.


Assuntos
Medicina Nuclear , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Dipeptídeos/uso terapêutico , Lutécio/uso terapêutico , Resultado do Tratamento
3.
Eur J Nucl Med Mol Imaging ; 50(12): 3513-3537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37624384

RESUMO

PREAMBLE: The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.

4.
Eur J Nucl Med Mol Imaging ; 49(4): 1386-1406, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35022844

RESUMO

PURPOSE: 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS: A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION: This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos
5.
Eur J Nucl Med Mol Imaging ; 45(12): 2218-2228, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30167801

RESUMO

PURPOSE: The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine. METHODS: The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary, or sooner, if indicated. CONCLUSION: Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by entities not providing these services is not authorized.


Assuntos
Rim/diagnóstico por imagem , Medicina Nuclear , Guias de Prática Clínica como Assunto , Cintilografia/métodos , Sociedades Científicas , Adulto , Humanos , Controle de Qualidade , Cintilografia/efeitos adversos , Segurança
6.
J Nucl Med Technol ; 52(1): 63-67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443111

RESUMO

This study aimed to analyze the compliance of health care institutions with the Society of Nuclear Medicine and Molecular Imaging (SNMMI) procedure guidelines for gastric emptying scintigraphy (GES). Methods: A 19-question survey on demographics and the GES protocol was conducted using a Google form. The demographic questions covered position, number of technologists in the department, location, type of health care institution, and number of GES studies per month. The protocol questions included patient preparation, meal preparation, withholding of scheduled medications, radiopharmaceutical type, and radiopharmaceutical dose. The survey was sent to 7 nuclear medicine Facebook groups and a list of clinical affiliates provided by the Indiana University School of Medicine Nuclear Medicine Program. Descriptive statistics were compiled for most questions. A Fisher exact test with a significance level of 0.05 was used to compare the type of health care institution with compliance with the SNMMI GES protocol regarding radiolabeling time, meal preparation, and meal components, as well as to compare the type of health care institution with the number of GES studies performed per institution. Results: In total, 240 people responded to the survey. Most were nonsupervisory nuclear medicine technologists (72%) in nonacademic institutions (72%) and groups with 4 or more technologists (62%). Of the respondents, 72% followed the SNMMI guideline of adding the radiopharmaceutical before cooking, but only 37% followed the meal component guideline. There was no significant association between the type of institution or the number of GES studies and compliance with radiolabeling time or with meal preparation or components. Most respondents asked patients to withhold medications per SNMMI guidelines and used the recommended radiopharmaceutical (99mTc-sulfur colloid, 95%) at the recommended dose (18.5-37 MBq, 84%). Conclusion: Although most respondents followed most aspects of the SNMMI guidelines for GES, more than half did not use the recommended meal of liquid egg whites. Compliance did not vary between academic and nonacademic institutions or between groups performing a large or a small number of GES studies.


Assuntos
Medicina Nuclear , Humanos , Esvaziamento Gástrico , Compostos Radiofarmacêuticos , Cintilografia , Imagem Molecular
7.
Brachytherapy ; 20(3): 497-511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824051

RESUMO

PURPOSE: The American College of Radiology (ACR), American Brachytherapy Society (ABS), American College of Nuclear Medicine (ACNM), American Society for Radiation Oncology (ASTRO), Society of Interventional Radiology (SIR), and Society of Nuclear Medicine and Molecular Imaging (SNMMI) have jointly developed a practice parameter on selective internal radiation therapy (SIRT) or radioembolization for treatment of liver malignancies. Radioembolization is the embolization of the hepatic arterial supply of hepatic primary tumors or metastases with a microsphere yttrium-90 brachytherapy device. MATERIALS AND METHODS: The ACR -ABS -ACNM -ASTRO -SIR -SNMMI practice parameter for SIRT or radioembolization for treatment of liver malignancies was revised in accordance with the process described on the ACR website (https://www.acr.org/ClinicalResources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters-Interventional and Cardiovascular Radiology of the ACR Commission on Interventional and Cardiovascular, Committee on Practice Parameters and Technical Standards-Nuclear Medicine and Molecular Imaging of the ACR Commission on Nuclear Medicine and Molecular Imaging and the Committee on Practice Parameters-Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with ABS, ACNM, ASTRO, SIR, and SNMMI. RESULTS: This practice parameter is developed to serve as a tool in the appropriate application of radioembolization in the care of patients with conditions where indicated. It addresses clinical implementation of radioembolization including personnel qualifications, quality assurance standards, indications, and suggested documentation. CONCLUSIONS: This practice parameter is a tool to guide clinical use of radioembolization. It focuses on the best practices and principles to consider when using radioemboliozation effectively. The clinical benefit and medical necessity of the treatment should be tailored to each individual patient.


Assuntos
Braquiterapia , Neoplasias Hepáticas , Medicina Nuclear , Radioterapia (Especialidade) , Braquiterapia/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Imagem Molecular , Radioisótopos de Ítrio/uso terapêutico
8.
Med Phys ; 45(1): 258-276, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29091269

RESUMO

PURPOSE: Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts. METHODS: We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts. RESULTS: The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom activity ratios 9.7:1, 4:1, and 2:1, respectively. For all phantoms and at all contrast ratios, the average RMS error was found to be significantly lower for the proposed automated method compared to the manual analysis of the phantom scans. The uptake measurements produced by the automated method showed high correlation with the independent reference standard (R2 ≥ 0.9987). In addition, the average computing time for the automated method was 30.6 s and was found to be significantly lower (P ≪ 0.001) compared to manual analysis (mean: 247.8 s). CONCLUSIONS: The proposed automated approach was found to have less error when measured against the independent reference than the manual approach. It can be easily adapted to other phantoms with spherical inserts. In addition, it eliminates inter- and intraoperator variability in PET phantom analysis and is significantly more time efficient, and therefore, represents a promising approach to facilitate and simplify PET standardization and harmonization efforts.


Assuntos
Algoritmos , Fluordesoxiglucose F18 , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Compostos Radiofarmacêuticos , Humanos
10.
Transl Lung Cancer Res ; 6(6): 617-620, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29218264

RESUMO

This article discusses the role of PET/CT in contributing to precision medicine in lung cancer, and provides the perspective of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) on this process. The mission and vision of SNMMI are listed, along with the guidance provided by SNMMI to promote best practice in precision medicine. Basic principles of PET/CT are presented. An overview of the use of PET/CT imaging in lung cancer is discussed. In lung cancer patients, PET/CT is vitally important for optimal patient management. PET/CT is essential in determining staging and re-staging of disease, detecting recurrent or residual disease, evaluating response to therapy, and providing prognostic information. PET/CT is also critically important in radiation therapy planning by determining the extent of active disease, including an assessment of functional tumor volume. The current approach in tumor imaging is a significant advance over conventional imaging. However, recent advances suggest that therapeutic response criteria in the near future will be based on metabolic characteristics and will include the evaluation of biologic characteristics of tumors to further enhance the effectiveness of precision medicine in lung cancer, producing improved patient outcomes with less morbidity.

11.
J Nucl Med Technol ; 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273702
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA