Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(8): 4565-4572, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33733751

RESUMO

Secondary organic aerosol (SOA) plays a critical role in sustained haze pollution in megacities. Traditional observation of atmospheric aerosols usually analyzes the ambient organic aerosol (OA) but neglects the SOA formation potential (SOAFP) of precursors remaining in ambient air. Knowledge on SOAFP is still limited, especially in megacities suffering from frequent haze. In this study, the SOAFP of ambient air in urban Beijing was characterized at different pollution levels based on a two-year field observation using an oxidation flow reactor (OFR) system. Both OA and SOAFP increased as a function of ambient pollution level, in which increasing concentrations of precursor volatile organic compounds (VOCs) and decreasing atmospheric oxidation capacity were found to be the two main influencing factors. To address the role of the atmospheric oxidation capacity in SOAFP, a relative OA enhancement ratio (EROA = 1 + SOAFP/OA) and the elemental composition of the OA were investigated in this study. The results indicated that the atmospheric oxidation capacity was weakened and resulted in higher SOAFP on more polluted days. The relationship found between SOAFP and the atmospheric oxidation capacity could be helpful in understanding changes in SOA pollution with improving air quality in the megacities of developing countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Compostos Orgânicos Voláteis/análise
2.
J Hazard Mater ; 466: 133668, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309167

RESUMO

Organic vapors emitted during solvent use are important precursors of secondary organic aerosols (SOAs). Industrial coatings are a major class of solvents that emit volatile and intermediate volatile organic compounds (VOCs and IVOCs, respectively). However, the emission factors and source profiles of VOCs and IVOCs from industrial coatings remain unclear. In this study, representative solvent- and water-based industrial paints were evaporated, sampled and tested using online and offline instruments. The VOC and IVOC emission factors for solvent-based paints are 129-254 and 25-80 g/kg, while for water-based paint are 13 and 32 g/kg, respectively. In solvent-based paints, the VOCs are mainly aromatics, while the IVOCs are composed of long-chain alkanes, alkenes, carbonyls and halocarbons. The VOCs and IVOCs in water-based paint are mostly oxygenates, such as ethanol, acetone, ethylene glycol, and Texanol. During the evaporation of solvent-based paints, the fraction of IVOCs increases along with those of alkenes and aldehydes, while the proportion of aromatics decreases. For water-based paint, the fraction of IVOCs slightly decreases with evaporation. The SOA formation potentials of solvent-based paints are 8.6-28.0 g/kg, much higher than that of water-based paint (0.65 g/kg); thus, substituting solvent-based paints with water-based paints may significantly decrease SOA formation.

3.
Environ Pollut ; 335: 122373, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580007

RESUMO

Coking plants in China generate a substantial amount of volatile organic compounds (VOCs). The emission factors (EFs) of VOCs from coking plants are not well known, and thus, this study characterized the VOCs in the emissions from four coking plants in Shanxi, China. The EFs of VOCs from different stages of the coking process were calculated, and coal charging exhibited the highest EFs of VOCs, followed by the flue gases from combustion of coke oven gas, wastewater treatment, coke pushing and chemical byproduct recycling. The VOCs in emissions differed by coking process. Alkanes, aromatics and alkenes were the main VOCs emitted during the coking, wastewater treatment and chemical byproduct recycling processes, respectively. To effectively control the contribution of VOCs from coking processes to secondary organic aerosols and ozone formation, attention should be given to wastewater treatment and coal loading processes. The mean annual weight of VOCs emitted from coking plants in China from 2019 to 2021 was estimated to be 32.91 Gg with coking, chemical byproduct recycling, and wastewater treatment processes accounting for 91.34%, 7.85%, and 0.80% of total VOCs, respectively. An uneven spatial distribution of VOCs emissions in China was identified, with Shanxi, Shaanxi, Hebei, Inner Mongolia and Shandong being the largest contributors.


Assuntos
Poluentes Atmosféricos , Coque , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Carvão Mineral , China , Ozônio/análise
4.
Environ Pollut ; 316(Pt 2): 120693, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402418

RESUMO

Soil drought and nitrogen (N) deposition can influence the biogenic volatile organic compound (BVOC) emissions and thereby their ozone (O3) and secondary organic aerosol (SOA) formation. This study addressed their single and combined effects on BVOC emissions of Pinus thunbergii by laboratory simulation experiments. The results showed that light drought (LD, 50% soil volumetric water content (VWC)) stimulated isoprene, monoterpene, sesquiterpene, and total BVOC emissions, while moderate drought (MD, 30% and 40% VWC) and severe drought (SD, 10% and 20% VWC) inhibited their emissions (except for sesquiterpene in 20% VWC). N deposition decreased other VOC emissions and increased isoprene and sesquiterpene emissions. Total BVOCs and monoterpene were stimulated in low N deposition (LN, 2 g N/(m2·yr)) and inhibited in moderate (MN, 5 g N/(m2·yr)) and high N deposition (HN, 10 g N/(m2·yr)). Under combined treatment of soil drought and N deposition, total BVOC, monoterpene, and other VOC emissions were inhibited, sesquiterpene had no significant change, and isoprene emission was inhibited in MD combined treatment but promoted in SD. The O3 formation potential (OFP) and SOA formation potential (SOAP) from the changed BVOC emissions were calculated, OFP and SOAP of BVOC emissions and their compositions varied significantly among the treatments. Our study provided theoretical basis for assessing the impact of climate change and atmospheric pollution on BVOC emissions and their contribution to the formation of secondary atmospheric pollution.


Assuntos
Pinus , Compostos Orgânicos Voláteis , Nitrogênio , Solo , Secas , Aerossóis , Água , Monoterpenos
5.
Environ Pollut ; 327: 121464, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963451

RESUMO

Herein, the formation and aging processes of organic aerosol (OA) in urban Seoul, Korea, during winter were investigated using a high-resolution aerosol mass spectrometer (HR-ToF-AMS) and an oxidation flow reactor (OFR). The results demonstrated that the highest secondary OA (SOA) production (ΔOA = 3.44 µg m-3 with a relative OA enhancement ratio (EROA) = 1.40) occurred at ∼2 eq. days of OH exposure. Particularly, higher SOA production was observed under the following atmospheric conditions: high relative humidity (RH) (>70%) and high PM1 mass concentration (>50 µg m-3), demonstrating that oxidation capacity, heterogeneous and aqueous phase reactions are important for further oxidation. Additionally, increased SOA formation occurs under both higher hydrocarbon-like OA and more oxidized OOA conditions. Further oxidation of both freshly emitted and aged and/or transported OA can be a remarkable further source of SOA in winter in Seoul and further downwind areas. In particular, the high mass concentration of MO-OOA in high total PM1 would be an important indication that SOA formation could be accelerated by a heterogeneous reaction, necessitating additional investigations on the haze formation process.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Seul , Oxirredução , Aerossóis/análise
6.
Sci Total Environ ; 832: 155045, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398421

RESUMO

Secondary organic aerosol (SOA) formation originating from the emission of anthropogenic volatile organic compounds (VOCs) makes a significant contribution to fine particulate matter (PM2.5) pollution in urban areas. Investigation on the SOA formation potential (SOAFP) can help us understand the contribution of different sources to SOA formation. To characterize the SOAFP of ambient air from anthropogenic VOCs in the urban area of Beijing, field observation was implemented using a twin oxidation flow reactor (Twin-OFRs) system in the winters of 2016 and 2017. Compared to the winter of 2016, the seasonal-average SOAFP in the winter of 2017 was found to decrease by about 74% (18.6 to 4.9 µg/m3), which is more than that of PM1 (59%, 48.7 to 20.2 µg/m3), PM2.5 (61%, 114.4 to 44.8 µg/m3) and CO (57%, 2.1 to 0.9 mg/m3) that mainly comes from the combustion of fossil fuels, suggesting complex affecting factors on SOAFP. The results of wind decomposition mathematical modeling showed that anthropogenic factors and favorable meteorological conditions both contributed significantly to the decrease in SOAFP. The reduction of emissions from scatter coal combustion, which is the key VOCs source for SOAFP, is probably the most important anthropogenic factor affecting SOAFP. In the winter of 2016, the ratio of benzene to toluene is 1.45 that was close to 1.54 representing coal combustion emission; however, it decreased dramatically to 1.05 in the winter of 2017, suggesting considerable reduction of VOC emissions from scatter coal combustion in the latter year due to the coal-to-gas transition in Beijing and surrounding regions. The SOAFP measured in this study considers all ambient VOCs that can react with OH radical, providing another representative method for estimating it. These results could be beneficial to understanding the factors driving SOAFP and its contribution to PM2.5, especially in regions with high-intensity anthropogenic emissions. Synopsis: This study reported the sharp decline of secondary organic aerosol formation potential (SOAFP) between two consecutive winters in Beijing and analyzed the reasons.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , China , Carvão Mineral , Monitoramento Ambiental , Material Particulado/análise , Compostos Orgânicos Voláteis/análise
7.
Huan Jing Ke Xue ; 43(3): 1140-1150, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258178

RESUMO

The characteristics and sources of PM2.5-O3 compound pollution were analyzed based on the high-resolution online monitoring data of PM2.5, O3 and volatile organic compounds(VOCs) observed in Tianjin from 2017 to 2019. The results showed that total PM2.5-O3 compound pollution was 34 days, which only appeared between March and September and slightly increased by year. The peak value of ρ(O3)(301-326 µg·m-3) appeared when ρ(PM2.5) ranged from 75 µg·m-3 to 85 µg·m-3. During PM2.5-O3 compound pollution, the average ρ(VOCs) was 72.59 µg·m-3, and the chemical compositions of VOCs were alkanes, aromatics, alkenes, and alkynes, accounting for 61.51%, 20.38%, 11.54%, and 6.57% of VOCs concentration on average, respectively. The concentration of the top 20 species of VOCs increased, among which the proportion of alkane species such as ethane, n-butane, isobutane, and isopentane increased; the proportion of alkenes and alkynes decreased slightly; and the proportion of benzene and 1,2,3-trimethylbenzene of aromatic hydrocarbons increased slightly. The ozone formation potential(OFP) contribution of alkanes, alkenes, aromatics, and alkynes were 19.68%, 39.99%, 38.08%, and 2.25%, respectively; the contributions of alkanes, alkenes, and aromatics to secondary organic aerosol(SOA) formation potential were 7.94%, 2.17%, and 89.89%, respectively. Compared with that of non-compound pollution, the contribution of alkanes and aromatics to OFP increased 13.8% and 4.3%, and that to SOA formation potential increased 2.3% and 0.2%, respectively. The contribution of alkenes to OFP and SOA formation potential decreased 9.4% and 15.6%, respectively, and the contribution of alkynes to OFP increased 7.7% in compound pollution. The contributions of main species such as 1-pentene, n-butane, methyl cyclopentane, isopentane, 1,2,3-trimethylene, propane, toluene, acetylene, o-xylene, ethylbenzene, m-ethyltoluene, and m/p-xylene to OFP increased, and that of isoprene to OFP decreased. The contribution of benzene, 1,2,3-trimethylbenzene, toluene, and o-xylene to the potential formation of SOA increased during compound pollution. Positive matrix factorization was applied to estimate the contributions of sources to OFP and SOA formation potential in compound pollution, solvent usage, automobile exhaust, petrochemical industrial emission, natural source, liquefied petroleum gas(LPG) evaporation, combustion source, gasoline evaporation, and other industrial process sources were identified as major sources of OFP and SOA formation potential; the contributions of each source to OFP were 21.9%, 16.9%, 16.7%, 12.4%, 8.3%, 7.7%, 2.9%, and 13.2%, respectively, and to SOA formation potentials were 46.8%, 14.4%, 7.1%, 11.9%, 5.9%, 6.6%, 1.6%, and 5.7%, respectively. Solvent usage, automobile exhaust, and petrochemical industrial emissions were main sources for PM2.5-O3 compound pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Material Particulado/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
8.
Sci Total Environ ; 795: 148809, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328915

RESUMO

Chassis dynamometer experiments were conducted to investigate the effect of vehicle speed and usage of ethanol-blended gasoline (E10) on formation and evolution of gasoline vehicular secondary organic aerosol (SOA) using a Gothenburg Potential Aerosol Mass (Go: PAM) reactor. The SOA forms rapidly, and its concentration exceeds that of primary organic aerosol (POA) at an equivalent photochemical age (EPA) of ~1 day. The particle effective densities grow from 0.62 ± 0.02 g cm-3 to 1.43 ± 0.07 g cm-3 with increased hydroxyl radical (OH) exposure. The maximum SOA production under idling conditions (4259-7394 mg kg-fuel-1) is ~20 times greater than under cruising conditions. There was no statistical difference between SOA formation from pure gasoline and its formation from E10. The slopes in Van Krevelen diagram indicate that the formation pathways of bulk SOA includes the addition of both alcohol/peroxide functional groups and carboxylic acid formation from fragmentation. A closure estimation of SOA based on bottom-up and top-down methods shows that only 16%-38% of the measured SOA can be explained by the oxidation of measured volatile organic compounds (VOCs), suggesting the existence of missing precursors, e.g. unmeasured VOCs and probably semivolatile or intermediate volatile organic compounds (S/IVOCs). Our results suggest that applying parameters obtained from unified driving cycles to model SOA concentrations may lead to large discrepancies between modeled and ambient vehicular SOA. No reduction in vehicular `SOA production is realized by replacing normal gasoline with E10.


Assuntos
Poluentes Atmosféricos , Gasolina , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Gasolina/análise , Emissões de Veículos/análise
9.
Huan Jing Ke Xue ; 42(6): 2721-2729, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032071

RESUMO

Secondary organic aerosols (SOAs) are among the main components of air pollution. Accurately estimating SOAs formed from automobile exhaust is crucial for controlling and mitigating traffic air pollution. Sufficient monitoring data is difficult for regional analysis owing to limited monitoring data over a small area or few observation stations. Indirect methods may be used to estimate SOA using data on the number and types of vehicles. A linear reference system of Central Plains urban agglomeration was built from the national trunk line network system and the traffic survey data of transportation. The numbers of different types of vehicles were assigned to road segments as the traffic flow according to the represented length between monitoring stations. Then, VOCs emissions were calculated through the emission coefficient method based on the previous traffic flow data. Moreover, further estimations of the SOA formation potential were made by the fractional aerosol coefficient approach. Through kernel density analysis, discrete point data of the observer station were transformed into line segments and expanded to a continuous spatial distribution for quantitative and spatial variation analysis of the SOA in the study area. The results show that ① toluene has the highest SOA generation potential, 1,4-diethylbenzene has the strongest ability to form SOA, and aromatic hydrocarbons exhibit higher SOA formation capacity than alkanes; ② small and medium gasoline passenger cars generate the most SOA and account for about 1/3 of the total SOA, but small gasoline trucks exhibit the strongest capacity for SOA formation; ③ regarding the capacity of SOA formation for vehicles using different fuel types, gasoline vehicles have a higher capacity than diesel vehicles, and passenger cars have a slightly higher capacity than trucks; ④ in Central Plains urban agglomeration, the spatial distribution of SOA intensity data shows a trend of convergence to the center of Zhengzhou city. Gasoline vehicles exhibit a similar pattern overall, but diesel vehicles exhibit a weaker trend that decreases distinctly. SOA intensity along the north-south direction is much higher than that of the east-west direction around the center of Zhengzhou crossing.

10.
Huan Jing Ke Xue ; 42(1): 55-64, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372457

RESUMO

The characterization and source apportionment of atmospheric volatile organic compounds (VOCs) in Tianjin in 2019 were investigated based on high-resolution online monitoring data observed at an urban site in Tianjin. The results showed that the average annual concentration of VOCs was 48.9 µg·m-3, and seasonal concentrations followed with winter (66.9 µg·m-3) > autumn (47.9 µg·m-3) > summer (42.0 µg·m-3) > spring (34.6 µg·m-3). The chemical compositions of the VOCs were alkanes, aromatics, alkenes, and alkynes, which accounted for 65.0%, 17.4%, 14.6%, and 3.0% of the VOCs concentrations on average, respectively. The proportion of alkanes, aromatics, and alkynes was the highest in autumn, summer, and winter, respectively, while a higher alkenes proportion was observed in summer and winter. The ozone formation potential contribution of alkanes, alkenes, aromatics, and alkynes in spring and summer was 16.9%, 48.6%, 33.5%, and 1.0%, respectively, and the species with higher contributions were ethene, propylene, m,p-xylene, 1,2,3-trimethylbenzene, toluene, isoprene, trans-2-butene, cis-2-pentene, o-xylene, and m-ethyltoluene. During autumn and winter, the aromatics contributed as much as 91.5% to the secondary organic aerosol (SOA) formation potential, and o-xylene, toluene, m,p-xylene, ethylbenzene, o-ethyltoluene, and benzene were the main contributing species. Positive matrix factorization was applied to estimate VOCs source contributions, and automobile exhaust, liquefied petroleum gas/natural gas (LPG/NG) and gasoline evaporation, solvent usage, petrochemical industrial emissions, combustion, and natural sources were identified as major sources of VOCs in spring and summer, accounting for 29.2%, 19.9%, 16.4%, 10.3%, 7.3%, and 6.6%, respectively. While in autumn and winter, the contributions of LPG/NG and gasoline evaporation, automobile exhaust, combustion, solvent usage, and petrochemical industrial emissions were 32.4%, 21.9%, 18.5%, 13.3%, and 8.4%, respectively. Compared to the source contributions in spring and summer, a significant increase was observed for LPG/NG and combustion emission of 62.8% and 153.4%, respectively, and other sources decreased by 18.4%-25.0% in autumn and winter. Source composition spectrums showed that the petrochemical industry and solvent usage were the main emission sources of alkenes and aromatics in spring and summer, and combustion and solvent usage were the main emission sources of aromatics in autumn and winter. Thus, focus should be played on the petrochemical industry and solvent usage in spring and summer and on combustion and solvent usage in autumn and winter to further prevent and control ozone and SOA in Tianjin.

11.
Sci Total Environ ; 720: 137617, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325589

RESUMO

The measurement of volatile organic compounds (VOCs) was carried out using an online GC-FID/MS at a rural site in North China Plain from 1 Nov. 2017 to 21 Jan. 2018. Their concentrations, emission ratios and source apportionment are investigated. During the entire experiment period, the average mixing ratio of VOCs was 69.5 ± 51.9 ppb, among which alkanes contributed the most (37% on average). Eight sources were identified in the non-negative matrix factorization (NMF) model as short-chain alkanes (13.3%), biomass burning (4.6%), solvent (10.8%), industry (3.7%), coal combustion (41.1%), background (4.5%), vehicular emission (7.7%) and secondary formation (14.2%). In addition to the formation of OVOCs through photochemical reactions, the primary sources, such as coal combustion, biomass burning, vehicular emission, solvent and industry, can also contribute to OVOCs emissions. High OVOCs emission ratios thus were observed at Wangdu site. Primary emission was estimated to contribute 50%, 45%, 73%, 77%, 40%, and 29% on average to acrolein, acetone, methylvinylketone (MVK), methylethylketone (MEK), methacrolein and n-hexanal according to NMF analysis, respectively, which was well consistent with the contribution from photochemical age method. Secondary organic aerosol formation potential (SOAFP) was evaluated by SOA yield, which was significantly higher under low-NOx condition (13.4 µg m-3 ppm-1) than that under high-NOx condition (3.2 µg m-3 ppm-1). Moreover, the photochemical reactivity and sources of VOCs showed differences in seven observed pollution episodes. Among, the largest OH loss rate and SOAFP were found in severe pollution plumes, which were induced primarily by coal combustion. Therefore, mitigation strategies for severe pollution formation should focus on reducing coal combustion emitted VOCs that lead to SOA formation.

12.
Sci Total Environ ; 650(Pt 2): 2624-2639, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373049

RESUMO

Based on detailed data on 102 volatile organic compounds (VOCs) measured continuously from 2016.10.9 to 2016.11.17 in Wuhan, the VOC characteristics, secondary organic aerosol (SOA) characteristics, SOA formation potential (SOAP), potential source regions, sources and contributions during different haze episodes were analyzed. The total VOC (TVOC) concentrations on clear days (visibility >10 km), slight haze days (visibility of 5-10 km), and severe haze days (visibility <5 km) were 34.87 ±â€¯14.89 ppbv, 45.06 ±â€¯26.69 ppbv, and 49.55 ±â€¯24.82 ppbv, respectively. The SOAP on haze days (447.04 ±â€¯253.85 ppbv) was significantly higher than that on clear days (300.62 ±â€¯138.48 ppbv), and aromatics were the dominant contributors to SOA formation under different visibility conditions, accounting for approximately 97% of the total SOAP. The ratio of ethylbenzene to m/p-xylene (E/X) indicated that atmospheric photochemical reactions were slightly stronger on haze days. The ratio of toluene to benzene (T/B) indicated that vehicle exhaust had significant effects on VOCs, but no significant changes occurred during different haze episodes. The ratio of benzene, toluene, ethylbenzene and xylenes (BTEX) to CO indicated that VOCs from solvent usage in painting/coating and industrial emissions increased with increasing haze pollution. Based on backward trajectories and the potential source contribution function (PSCF), short-distance transport was the main source influencing VOC pollution, especially transport from the southwest. Seven sources were identified by positive matrix factorization (PMF): industrial sources, vehicular exhaust, solvent usage in painting/coating, fuel evaporation, liquefied petroleum gas (LPG) usage, biogenic sources and biomass burning. Moreover, solvent usage in painting/coating, vehicle exhaust and LPG usage were the most important sources that significantly aggravated VOC pollution during haze events. The results can provide references for local governments developing control strategies of VOCs during haze pollution events.

13.
Huan Jing Ke Xue ; 38(2): 461-468, 2017 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964500

RESUMO

Based on environmental statistical data and emission factor, an anthropogenic volatile organic compounds (VOCs) emission inventory was established for the Chang-Zhu-Tan region, and a grid with spatial resolution of 3 km×3 km was built according to the spatial feature data. Ozone formation potential (OFP) and secondary organic aerosol (SOA) formation potential of anthropogenic sources were also estimated. The results showed that the total anthropogenic VOCs emission was about 113.49 kt in Chang-Zhu-Tan region and the main sources were industrial processes, solvent utilization and vehicles with the VOCs emission of 35.88 kt, 28.72 kt and 22.13 kt, respectively. Paving pitch and architecture wall painting accounted for the majority of the solvent utilization and the building materials industry accounted for 75.34% of VOCs emission from the industrial processes. Liling was the largest contributor compared to the other cities in Chang-Zhu-Tan region, where the VOCs emission from these anthropogenic sources in 2014 was 16.58 kt. The total OFP of these sources was 375.33 kt, in which solvent utilization contributed 27.28% and the O3 generative capacity of biomass burning was the largest. Solvent utilization contributed 35.35% to the total SOA formation potentials and its SOA generative capacity was also the largest. The spatial distribution characteristics revealed that the VOCs emission mostly originated from urban area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA