Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753510

RESUMO

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Assuntos
Proteínas de Neoplasias , Multimerização Proteica , Molécula 1 de Interação Estromal , Humanos , Sítios de Ligação , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química
2.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29030115

RESUMO

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Assuntos
Canais de Cálcio/imunologia , Sinalização do Cálcio/imunologia , Cálcio/imunologia , Linfócitos T/imunologia , Animais , Calcineurina/imunologia , Calcineurina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Divisão Celular/imunologia , Células Cultivadas , Feminino , Glicólise/imunologia , Células HEK293 , Humanos , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/imunologia , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/imunologia , Molécula 2 de Interação Estromal/metabolismo , Linfócitos T/metabolismo
3.
Annu Rev Physiol ; 84: 355-379, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637326

RESUMO

Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Molécula 1 de Interação Estromal/metabolismo
4.
Immunity ; 44(6): 1350-64, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27261277

RESUMO

T follicular helper (Tfh) cells promote affinity maturation of B cells in germinal centers (GCs), whereas T follicular regulatory (Tfr) cells limit the GC reaction. Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels mediated by STIM and ORAI proteins is a fundamental signaling pathway in T lymphocytes. Conditional deletion of Stim1 and Stim2 genes in T cells abolished SOCE and strongly reduced antibody-mediated immune responses following viral infection caused by impaired differentiation and function of Tfh cells. Conversely, aging Stim1Stim2-deficient mice developed humoral autoimmunity with spontaneous autoantibody production due to abolished Tfr cell differentiation in the presence of residual Tfh cells. Mechanistically, SOCE controlled Tfr and Tfh cell differentiation through NFAT-mediated IRF4, BATF, and Bcl-6 transcription-factor expression. SOCE had a dual role in controlling the GC reaction by regulating both Tfh and Tfr cell differentiation, thus enabling protective B cell responses and preventing humoral autoimmunity.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Linfócitos T/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 2 de Interação Estromal/genética
5.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28238652

RESUMO

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/enzimologia , Actinas/metabolismo , Membrana Celular/enzimologia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Filaminas/metabolismo , eIF-2 Quinase/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Multimerização Proteica , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Sinaptotagmina I/metabolismo , Fatores de Tempo , Transfecção , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38709251

RESUMO

Elevated intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel (SOCC), termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i elevation in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of SOCC. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, anti-inflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to MCT-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries (PAs) and the PASMCs of MCT-PH rats. 2) Knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats. 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model. 4) SH decreased MCT-enhanced SOCE, [Ca2+]i and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.

7.
J Physiol ; 602(8): 1449-1462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029630

RESUMO

Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.

8.
J Biol Chem ; 299(11): 105310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778728

RESUMO

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/genética , Células Jurkat , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte Proteico/genética , Proliferação de Células/genética , Sobrevivência Celular/genética
9.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303059

RESUMO

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Assuntos
Ácido Egtázico/análogos & derivados , Degeneração Retiniana , Sirtuínas , Camundongos , Animais , Degeneração Retiniana/metabolismo , Calpaína/metabolismo , Trocador de Sódio e Cálcio , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Morte Celular , Sirtuínas/metabolismo
10.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587532

RESUMO

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Assuntos
Depressão , Hipocampo , Quempferóis , Lipopolissacarídeos , Mastócitos , Fatores de Transcrição NFATC , Quercetina , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Quercetina/farmacologia , Quercetina/uso terapêutico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
11.
Annu Rev Clin Psychol ; 20(1): 333-354, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38237038

RESUMO

Research indicates that sexual orientation change efforts (SOCEs) are not effective and furthermore commonly lead to iatrogenic effects such as depression, anxiety, and even suicide. Negative attitudes toward homosexuality derive from most formal religions and are incarnated in medical and psychological theories that support and encourage SOCEs. Oppression of sexual minorities makes it unlikely that change requests by patients are voluntary. Recently there has been a dramatic change as the field moves from reparative to affirmative approaches. Here, we review the history of SOCEs, their consequences, current affirmative treatments, and future directions in the field as they pertain to the well-being of the queer community. From an institutional community psychology perspective, we argue that even if true conversion were possible, such efforts are unethical and should not be pursued even if requested. As is the case with all psychological/psychiatric interventions, the issue is not "can" but "ought."


Assuntos
Doença Iatrogênica , Minorias Sexuais e de Gênero , Humanos , Minorias Sexuais e de Gênero/psicologia , Comportamento Sexual , História do Século XX , Psicoterapia/métodos , História do Século XXI
12.
Ecotoxicol Environ Saf ; 273: 116104, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377779

RESUMO

Increased risk of neurodegenerative diseases has been envisaged for air pollution exposure. On the other hand, environmental risk factors, including air pollution, have been suggested for Amyotrophic Lateral Sclerosis (ALS) pathomechanism. Therefore, the neurotoxicity of ultrafine particulate matter (PM0.1) (PM < 0.1 µm size) and its sub-20 nm nanoparticle fraction (NP20) has been investigated in motor neuronal-like cells and primary cortical neurons, mainly affected in ALS. The present data showed that PM0.1 and NP20 exposure induced endoplasmic reticulum (ER) stress, as occurred in cortex and spinal cord of ALS mice carrying G93A mutation in SOD1 gene. Furthermore, NSC-34 motor neuronal-like cells exposed to PM0.1 and NP20 shared the same proteomic profile on some apoptotic factors with motor neurons treated with the L-BMAA, a neurotoxin inducing Amyotrophic Lateral Sclerosis/Parkinson-Dementia Complex (ALS/PDC). Of note ER stress induced by PM0.1 and NP20 in motor neurons was associated to pathological changes in ER morphology and dramatic reduction of organellar Ca2+ level through the dysregulation of the Ca2+-pumps SERCA2 and SERCA3, the Ca2+-sensor STIM1, and the Ca2+-release channels RyR3 and IP3R3. Furthermore, the mechanism deputed to ER Ca2+ refilling (e.g. the so called store operated calcium entry-SOCE) and the relative currents ICRAC were also altered by PM0.1 and NP20 exposure. Additionally, these carbonaceous particles caused the exacerbation of L-BMAA-induced ER stress and Caspase-9 activation. In conclusion, this study shows that PM0.1 and NP20 induced the aberrant expression of ER proteins leading to dysmorphic ER, organellar Ca2+ dysfunction, ER stress and neurotoxicity, providing putative correlations with the neurodegenerative process occurring in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Material Particulado , Animais , Camundongos , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios Motores/metabolismo , Proteômica , Cultura Primária de Células , Material Particulado/efeitos adversos , Estresse do Retículo Endoplasmático , Cálcio/metabolismo , Modelos Animais de Doenças
13.
J Physiol ; 601(19): 4183-4202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218018

RESUMO

Store-operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation-contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+ ] of the junctional SR terminal cisternae ([Ca2+ ]jSR ) depletes. [Ca2+ ]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+ ]jSR with RyR1 activity probably depends on the SR Ca2+ -buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in-phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in-phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Músculo Esquelético/fisiologia , Sinalização do Cálcio , Retículo Sarcoplasmático/metabolismo , Citoplasma/metabolismo , Cálcio/metabolismo
14.
J Biol Chem ; 298(2): 101604, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051417

RESUMO

Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ signaling and Ca2+-dependent functions and has been implicated in immunity, cancer, and organ development. SOCE-dependent cytosolic Ca2+ signals are affected by mitochondrial Ca2+ transport through several competing mechanisms. However, how these mechanisms interact in shaping Ca2+ dynamics and regulating Ca2+-dependent functions remains unclear. In a recent issue, Yoast et al. shed light on these questions by defining multiple roles of the mitochondrial Ca2+ uniporter in regulating SOCE, Ca2+ dynamics, transcription, and lymphocyte activation.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Citosol/metabolismo , Mitocôndrias/metabolismo
15.
J Biol Chem ; 298(8): 102259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841929

RESUMO

The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.


Assuntos
Asma , Trocador de Sódio e Cálcio , Remodelação das Vias Aéreas , Animais , Asma/genética , Cálcio/metabolismo , Camundongos , Músculo Liso/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
16.
J Cell Physiol ; 238(4): 714-726, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952615

RESUMO

Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Fatores de Transcrição , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo
17.
Glia ; 71(11): 2511-2526, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37533369

RESUMO

The expressions of ion channels by Müller glial cells (MGCs) may change in response to various retinal pathophysiological conditions. There remains a gap in our understanding of MGCs' responses to photoreceptor degeneration towards finding therapies. The study explores how an inhibition of store-operated Ca2+ entry (SOCE) and its major component, Orai1 channel, in MGCs protects photoreceptors from degeneration. The study revealed increased Orai1 expression in the MGCs of retinal degeneration 10 (rd10) mice. Enhanced expression of oxidative stress markers was confirmed as a crucial pathological mechanism in rd10 retina. Inducing oxidative stress in rat MGCs resulted in increasing SOCE and Ca2+ release-activated Ca2+ (CRAC) currents. SOCE inhibition by 2-Aminoethoxydiphenyl borate (2-APB) protected photoreceptors in degenerated retinas. Finally, molecular simulations proved the structural and dynamical features of 2-APB to the target structure Orai1. Our results provide new insights into the physiology of MGCs regarding retinal degeneration and shed a light on SOCE and Orai1 as new therapeutic targets.


Assuntos
Canais de Cálcio , Degeneração Retiniana , Ratos , Camundongos , Animais , Canais de Cálcio/metabolismo , Células Ependimogliais/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/prevenção & controle , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sinalização do Cálcio/fisiologia
18.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L246-L261, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366608

RESUMO

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Canais de Potencial de Receptor Transitório , Humanos , Ratos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Cálcio/metabolismo
19.
FASEB J ; 36(9): e22468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35913801

RESUMO

Cholestasis is a common complication of hepatitis B virus (HBV) infection, characterized by increased intrahepatic and plasma bile acid levels. Cholestasis was found negatively associated with hepatitis outcome, however, the exact mechanism by which cholestasis impacts anti-viral immunity and impedes HBV clearance remains elusive. Here, we found that cholestatic mice are featured with dysfunctional T cells response, as indicated by decreased sub-population of CD25+ /CD69+ CD4+ and CD8+ cells, while CTLA-4+ CD4+ and CD8+ subsets were increased. Mechanistically, bile acids disrupt intracellular calcium homeostasis via inhibiting mitochondria calcium uptake and elevating cytoplasmic Ca2+ concentration, leading to STIM1 and ORAI1 decoupling and impaired store-operated Ca2+ entry which is essential for NFAT signaling and T cells activation. Moreover, in a transgenic mouse model of HBV infection, we confirmed that cholestasis compromised both CD4+ and CD8+ T cells activation resulting in poor viral clearance. Collectively, our results suggest that bile acids play pivotal roles in anti-HBV infection via controlling T cells activation and metabolism and that targeting the regulation of bile acids may be a therapeutic strategy for host-virus defense.


Assuntos
Colestase , Hepatite B , Animais , Ácidos e Sais Biliares , Linfócitos T CD8-Positivos/metabolismo , Cálcio/metabolismo , Colestase/complicações , Hepatite B/complicações , Vírus da Hepatite B/metabolismo , Camundongos
20.
Mol Cell Biochem ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736800

RESUMO

Diabetic nephropathy (DN) is a renal microvascular complication caused by diabetes mellitus. One of the most typical characteristics of DN is glomerular mesangial cells (GMCs) proliferation. Stromal interaction molecule 1 (STIM1), a Ca2+ channel, is involved in many diseases. In this study, we investigated the role of STIM1 in the proliferation and fibrosis in high glucose (HG)-induced HBZY-1 cells. We found that the expression of STIM1 was increased in renal tissues of diabetic rat and HBZY-1 cells stimulated by HG. Downregulation of STIM1-mediated SOCE suppressed hyperglycemic cell proliferation and fibrosis by activating autophagy. In addition, the inhibitory effect of downregulating STIM1 on cells was blocked by autophagy inhibitor Bafilomycin A1 (BafA1). Moreover, this experiment also showed that STIM1 regulated autophagy, cell proliferation and fibrosis via PI3K/AKT/mTOR signal pathway. These results clarify the role of STIM1 in HBZY-1 cells and its mechanism, and provide a new target for the treatment of DN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA