Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442828

RESUMO

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias , Humanos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Cálcio , Transdução de Sinais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Movimento Celular
2.
J Biol Chem ; 296: 100714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930463

RESUMO

Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Hep G2 , Humanos
3.
Biochem Biophys Res Commun ; 608: 23-29, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35381425

RESUMO

Multidrug resistant tumor cells show collaterally sensitive to a range of non-toxic drugs. In this report, we describe the isolation of several P-glycoprotein-knockout cell clones, using CRISPR/Cas9, from Chinese hamster multidrug resistant model cell line and its parental cells (e.g., CHORC5 and AuxB1, respectively). All three P-glycoprotein-knockout clones of CHORC5 cells show complete loss of resistance to anti-cancer drugs (e.g., colchicine and doxorubicin), while gaining resistance to well characterized collateral sensitivity drugs (e.g., verapamil, progesterone and NSC73306). A correlation between P-glycoprotein and Sorcin expression levels and a possible role for the latter in low grade resistance to colchicine and doxorubicin was observed. Furthermore, we show that P-glycoprotein expression is necessary for the ROS-mediated mechanism of collateral sensitivity. However, expectantly, P-glycoprotein-knockout clones of CHORC5 cells revealed a dramatic increase in the accumulation of Rhodamine 123, Mito tracker red and doxorubicin, but not Hoechst 33342. The latter findings and their significance to P-glycoprotein collateral sensitivity remain to be determined.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Sensibilidade Colateral a Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Células CHO , Colchicina , Cricetinae , Doxorrubicina/farmacologia , Resistência a Medicamentos , Verapamil
4.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205207

RESUMO

Since dysregulation of intracellular calcium (Ca2+) levels is a common occurrence in neurodegenerative diseases, including Alzheimer's disease (AD), the study of proteins that can correct neuronal Ca2+ dysregulation is of great interest. In previous work, we have shown that plasma membrane Ca2+-ATPase (PMCA), a high-affinity Ca2+ pump, is functionally impaired in AD and is inhibited by amyloid-ß peptide (Aß) and tau, two key components of pathological AD hallmarks. On the other hand, sorcin is a Ca2+-binding protein highly expressed in the brain, although its mechanism of action is far from being clear. Sorcin has been shown to interact with the intracellular sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and other modulators of intracellular Ca2+ signaling, such as the ryanodine receptor or presenilin 2, which is closely associated with AD. The present work focuses on sorcin in search of new regulators of PMCA and antagonists of Aß and tau toxicity. Results show sorcin as an activator of PMCA, which also prevents the inhibitory effects of Aß and tau on the pump, and counteracts the neurotoxicity of Aß and tau by interacting with them.


Assuntos
Doença de Alzheimer/genética , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Encéfalo/metabolismo , Encéfalo/patologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Presenilina-2/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Proteínas tau/genética
5.
J Cell Physiol ; 234(4): 3685-3696, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171603

RESUMO

Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by suppressing P-glycoprotein (P-gp) and soluble resistance-related calcium-binding protein (SORCIN) independently. To reverse MDR more effectively, a new strategy was raised, that is, circumventing MDR by the coadministration of DMY and ondansetron (OND), a common antiemetic drug, during cancer chemotherapy. Meanwhile, the interior relation between P-gp and SORCIN was also revealed. The combination of DMY and OND strongly enhanced antiproliferative efficiency of adriamycin (ADR) because of the increasing accumulation of ADR in K562/ADR-resistant cell line. DMY could downregulate the expression of SORCIN and P-gp via the ERK/Akt pathways, whereas OND could not. In addition, it was proved that SORCIN suppressed ERK and Akt to inhibit P-gp by the silence of SORCIN, however, not vice versa. Finally, the combination of DMY, OND, and ADR led to G2/M cell cycle arrest and apoptosis via resuming P53 function and restraining relevant proteins expression. These fundamental findings provided a promising approach for further treatment of MDR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Flavonóis/farmacologia , Leucemia/tratamento farmacológico , Ondansetron/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Regulação para Baixo , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
J Mol Cell Cardiol ; 114: 199-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174767

RESUMO

Sorcin, a penta-EF hand Ca2+-binding protein expressed in cardiomyocytes, is known to interact with ryanodine receptors and other Ca2+ regulatory proteins. To investigate sorcin's influence on cardiac excitation-contraction coupling and its role in the development of cardiac malfunctions, we generated a sorcin knockout (KO) mouse model. Sorcin KO mice presented ventricular arrhythmia and sudden death when challenged by acute stress induced by isoproterenol plus caffeine. Chronic stress, which was induced by transverse aortic constriction, significantly decreased the survival rate of sorcin KO mice. Under isoproterenol stimulation, spontaneous Ca2+ release events were frequently observed in sorcin KO cardiomyocytes. Sorcin KO hearts of adult, but not young mice developed overexpression of L-type Ca2+ channel and Na+-Ca2+ exchanger, which enhanced ICa and INCX. Consequently, spontaneous Ca2+ release events in sorcin KO cardiomyocytes were more likely to induce arrhythmogenic delayed afterdepolarizations. Our study demonstrates sorcin deficiency may trigger cardiac ventricular arrhythmias due to Ca2+ disturbances, and evidences the critical role of sorcin in maintaining Ca2+ homeostasis, especially during the adrenergic response of the heart.


Assuntos
Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Deleção de Genes , Ventrículos do Coração/patologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Morte Súbita Cardíaca , Eletrocardiografia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos Knockout , Miócitos Cardíacos/patologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Estresse Fisiológico/efeitos dos fármacos
7.
J Cell Physiol ; 233(4): 3066-3079, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28681913

RESUMO

Recently, a new target Ca2+ -binding protein SORCIN was reported to participate in multidrug resistance (MDR) in cancer. Here we aim to investigate whether dihydromyricetin (DMY), a dihydroflavonol compound with anti-inflamatory, anti-oxidant, anti-bacterial and anti-tumor actions, reverses MDR in MCF-7/ADR and K562/ADR and to elucidate its potential molecular mechanism. DMY enhanced cytotoxicity of adriamycin (ADR) by downregulating MDR1 mRNA and P-gp expression through MAPK/ERK pathway and also inhibiting the function of P-gp significantly. Meanwhile, DMY decreased mRNA and protein expression of SORCIN, which resulted in elevating intracellular free Ca2+ . Finally, we investigated co-administration ADR with DMY remarkably increased ADR-induced apoptosis. Further study showed DMY elevated ROS levels and caspase-12 protein expression, which signal apoptosis in endoplasmic reticulum. At the same time, proteins related to mitochondrial apoptosis were also changed such as Bcl-2, Bax, caspase-3, caspase-9, and PARP. Finally, nude mice model also demonstrated that DMY strengthened anti-tumor activity of ADR in vivo. In conclusion, DMY reverses MDR by downregulating P-gp, SORCIN expression and increasing free Ca2+ , as well as, inducing apoptosis in MCF-7/ADR and K562/ADR. These fundamental findings provide evidence for further clinical research in application of DMY as an assistant agent in the treatment of cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Doxorrubicina/farmacologia , Flavonóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Concentração Inibidora 50 , Células K562 , Células MCF-7 , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodamina 123/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Drug Resist Updat ; 32: 23-46, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-29145976

RESUMO

The development of drug resistance continues to be a dominant hindrance toward curative cancer treatment. Overexpression of a wide-spectrum of ATP-dependent efflux pumps, and in particular of ABCB1 (P-glycoprotein or MDR1) is a well-known resistance mechanism for a plethora of cancer chemotherapeutics including for example taxenes, anthracyclines, Vinca alkaloids, and epipodopyllotoxins, demonstrated by a large array of published papers, both in tumor cell lines and in a variety of tumors, including various solid tumors and hematological malignancies. Upon repeated or even single dose treatment of cultured tumor cells or tumors in vivo with anti-tumor agents such as paclitaxel and doxorubicin, increased ABCB1 copy number has been demonstrated, resulting from chromosomal amplification events at 7q11.2-21 locus, leading to marked P-glycoprotein overexpression, and multidrug resistance (MDR). Clearly however, additional mechanisms such as single nucleotide polymorphisms (SNPs) and epigenetic modifications have shown a role in the overexpression of ABCB1 and of other MDR efflux pumps. However, notwithstanding the design of 4 generations of ABCB1 inhibitors and the wealth of information on the biochemistry and substrate specificity of ABC transporters, translation of this vast knowledge from the bench to the bedside has proven to be unexpectedly difficult. Many studies show that upon repeated treatment schedules of cell cultures or tumors with taxenes and anthracyclines as well as other chemotherapeutic drugs, amplification, and/or overexpression of a series of genes genomically surrounding the ABCB1 locus, is observed. Consequently, altered levels of other proteins may contribute to the establishment of the MDR phenotype, and lead to poor clinical outcome. Thus, the genes contained in this ABCB1 amplicon including ABCB4, SRI, DBF4, TMEM243, and RUNDC3B are overexpressed in many cancers, and especially in MDR tumors, while TP53TG1 and DMTF1 are bona fide tumor suppressors. This review describes the role of these genes in cancer and especially in the acquisition of MDR, elucidates possible connections in transcriptional regulation (co-amplification/repression) of genes belonging to the same ABCB1 amplicon region, and delineates their novel emerging contributions to tumor biology and possible strategies to overcome cancer MDR.


Assuntos
Antineoplásicos/farmacologia , Cromossomos Humanos Par 7/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes/genética , Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Cromossomos Humanos Par 7/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Amplificação de Genes/efeitos dos fármacos , Dosagem de Genes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética , Regulação para Cima
9.
Korean J Physiol Pharmacol ; 20(4): 387-97, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27382355

RESUMO

Neurofi brillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active GSK3ß (GSK3ß-S9A) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin-induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin signifi cantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.

10.
Biochem Biophys Res Commun ; 448(4): 430-6, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24796664

RESUMO

Sorcin, a 22 kDa Ca(2+) binding protein, was first identified in a vincristine-resistant Chinese hamster lung cell line, and was later demonstrated to be involved in the development of multidrug-resistance (MDR) phenotypes in a variety of human cancer cell lines. However, the exact role of sorcin in MDR cells is yet to be fully elucidated. Here we explored the role of sorcin in the development of MDR in leukemia cells, and revealed that the expression level of sorcin was directly correlated to the expression of MDR1/P-glycoprotein (P-gp). In addition, it was shown that sorcin induced the expression of MDR1/P-gp through a cAMP response element (CRE) between -716 and -709 bp of the mdr1/p-gp gene. Furthermore, overexpression of sorcin increased the phosphorylation of CREB1 and the binding of CREB1 to the CRE sequence of mdr1/p-gp promoter, and induced the expression of MDR1/P-gp. These findings suggested that sorcin induces MDR1/P-gp expression markedly through activation of the CREB pathway and is associated with the MDR phenotype. The new findings may be helpful for understanding the mechanisms of MDR in human cancer cells, prompting its further investigation as a molecular target to overcome MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Leucemia/genética , Leucemia/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Sítios de Ligação/genética , Células COS , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Chlorocebus aethiops , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes MDR , Humanos , Células K562 , Leucemia/tratamento farmacológico , Fosforilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transdução de Sinais , Transcrição Gênica , Regulação para Cima
11.
Cancers (Basel) ; 16(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39199583

RESUMO

SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.

12.
J Biomol Struct Dyn ; 42(4): 1812-1825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37098805

RESUMO

Soluble resistance-related calcium-binding protein or Sorcin is an allosteric, calcium-binding Penta-EF hand (PEF) family protein implicated in multi-drug resistant cancers. Sorcin is known to bind chemotherapeutic molecules such as Doxorubicin. This study uses in-silico molecular dynamics simulations to explore the dynamics and allosteric behavior of Sorcin in the context of Ca2+ uptake and Doxorubicin binding. The results show that Ca2+ binding induces large, but reversible conformational changes in the Sorcin structure which manifest as rigid body reorientations that preserve the local secondary structure. A reciprocal allosteric handshake centered around the EF5 hand is found to be key in Sorcin dimer formation and stabilization. Binding of Doxorubicin results in rearrangement of allosteric communities which disrupts long-range allosteric information transfer from the N-terminal domain to the middle lobe. However, this binding does not result in secondary structure destabilization. Sorcin does not appear to have a distinct Ca2+ activated mode of Doxorubicin binding.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Estrutura Secundária de Proteína , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Cálcio/química
13.
Neuroscience ; 518: 112-118, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35469971

RESUMO

Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid ß-peptides (Aß) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aß has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas tau/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Doença de Alzheimer/metabolismo , Membrana Celular/metabolismo , Emaranhados Neurofibrilares/metabolismo
14.
Colloids Surf B Biointerfaces ; 208: 112098, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509085

RESUMO

Sorcin (SOluble Resistance-related Calcium bInding proteiN) is a calcium binding protein that plays a key role in multidrug resistance (MDR) in human cancers. This study aimed at understanding the binding mechanism and structural basis for the interaction of structurally and functionally unrelated chemotherapeutic agent, namely doxorubicin, etoposide, omacetaxine mepesuccinate and paclitaxel with Sorcin by utilizing docking and molecular dynamic simulation approaches. The docking evaluation of etoposide, omacetaxine mepesuccinate and paclitaxel have shown a high affinity binding with Sorcin at the Ca2+-binding C-terminal domain (SCBD) in a comparable mode and affinity of binding to doxorubicin. Moreover, all of the docked compounds were shown to interact both hydrophilically and hydrophobically with the same residues within the active pocket which is located at interface of the Sorcin and collectively formed by EF5 loop, G helix and EF4 loop. However, the MD simulations revealed that the dynamics of Sorcin structure is different in the presence of the compounds when compared and contrasted to the Apo Sorcin, particularly in the first 25 ns, after which each system gained considerable structure stability. The difference in dynamics might be the outcome of high N and C-terminal flexibility that seem not to disturb compounds binding conformation but more likely is affecting chemical interaction network by breaking and establishing old and new hydrogen bonds, respectively. This detailed mechanistic understanding of different chemotherapeutic agents binding to Sorcin might be useful to open windows for designing and developing new inhibitors that are potentially capable of reversing the MDR in human cancers.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Doxorrubicina , Resistência a Múltiplos Medicamentos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
15.
Front Med (Lausanne) ; 8: 752619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869449

RESUMO

The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the calcium-binding protein for the regulation of calcium homeostasis and multidrug resistance. Although the mounting evidence suggests a crucial role of SRI in the chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI genomic alterations and drug sensitivity analysis were performed based on the cBioPortal and the CellMiner database. Furthermore, the correlations among the SRI expression and survival outcomes, clinical features, stemness, tumor mutation burden (TMB), microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA data. The differential analysis showed that SRI was upregulated in 25 tumor types compared with the normal tissues. Aberrant expression of SRI was able to predict survival in different cancers. Further, the most frequent alteration of SRI genomic was amplification. Moreover, the aberrant SRI expression was related to stemness score, epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune microenvironment in various types of cancer. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our findings highlight the predictive value of SRI in cancer and provide insights for illustrating the role of SRI in tumorigenesis and drug resistance.

16.
FEBS Lett ; 595(13): 1782-1796, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960419

RESUMO

Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca2+ stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress. Here, using nonexcitable HEK293 cells, we show that sorcin overexpression increased ATF6 signalling, whereas sorcin knock out caused a reduction in ATF6 transcriptional activity and increased ER stress. Altogether, our data suggest that sorcin downregulation during lipotoxic stress may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance.


Assuntos
Fator 6 Ativador da Transcrição/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Técnicas de Inativação de Genes/métodos , Obesidade/genética , Palmitatos/efeitos adversos , Animais , Cálcio/metabolismo , Células Cultivadas , Progressão da Doença , Regulação para Baixo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Resistência à Insulina , Camundongos , Obesidade/metabolismo , Transdução de Sinais , Ativação Transcricional/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
17.
Biochimie ; 189: 76-86, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34153376

RESUMO

Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatopatias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Viroses/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Hepatopatias/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Viroses/genética
18.
Clin Chim Acta ; 510: 741-745, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32946798

RESUMO

Sorcin (Soluble resistance-related calcium binding protein) is a calcium binding oncoprotein. Sorcin is overexpressed in several human tumors and cancer cells lines which confers multidrug resistance (MDR) to these cells. This review summarizes the biochemical functions of Sorcin which includes modulation of calcium homeostasis, apoptosis, and cancer metastasis. Sorcin is involved in various biological processes by interacting with other proteins, such as p-glycoprotein, programmed cell death protein 6, tumor necrosis factor receptor-associated protein 1, Annexin A7, polo-like kinase 1, HCV nonstructural 5A, signal transducer and activator of transcription 3, presenilin 2, α-synuclein, Ca2+-release channel and others. A deeper look into the function and interacting partners of Sorcin sheds more light on the possible effects of its physical activity and more elaborately, exploring the role of Sorcin in future research prospects.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Apoptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Humanos
19.
Biochim Biophys Acta Gen Subj ; 1864(8): 129618, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305337

RESUMO

BACKGROUND: Sorcin is a calcium sensor that exerts many calcium-related functions in the cells, e.g. it regulates calcium concentration in the cytoplasm, endoplasmic reticulum (ER) and mitochondria, by interacting with calcium pumps, exchangers and channels. Albeit Sorcin is an interesting potential cancer target, little is known about its interactors upon calcium-mediated activation. Our previous study suggested that Sorcin may recognize short linear binding motifs as the crystal structure revealed a self-interaction with a GYYPGG stretch in its N-terminus, and combinatorial peptide-phage display provided support for peptide-mediated interactions. METHODS: In this study we screened for motif-based interactions between Sorcin and intrinsically disordered regions of the human proteome using proteomic peptide phage display (ProP-PD). We identified a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a potential novel interactor and confirm the interaction through biophysical and cell-based approaches, and provide structural information through molecular dynamics simulations. RESULTS: Altogether, we identify a preferred motif in the enriched pool of binders and a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a preferred ligand. CONCLUSION: Through this study we gain information on a new Sorcin binding partner and profile Sorcin's motif-based interaction. GENERAL SIGNIFICANCE: The interaction between Sorcin and PPP1R3G may suggest a close dependence between glucose homeostasis and calcium concentration in the different cell compartments, opening a completely new and interesting scenery yet to be fully disclosed.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteoma/metabolismo , Células HeLa , Humanos
20.
Cancers (Basel) ; 12(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268494

RESUMO

The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA