Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150190, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838447

RESUMO

Soil salinity pose a significant challenge to global agriculture, threatening crop yields and food security. Understanding the salt tolerance mechanisms of plants is crucial for improving their survival under salt stress. AFP2, a negative regulator of ABA signaling, has been shown to play a crucial role in salt stress tolerance during seed germination. Mutations in AFP2 gene lead to increased sensitivity to salt stress. However, the underline mechanisms by which AFP2 regulates seed germination under salt stress remain elusive. In this study, we identified a protein interaction between AFP2 and SOS2, a Ser/Thr protein kinase known to play a critical role in salt stress response. Using a combination of genetic, biochemical, and physiological approaches, we investigated the role of the SOS2-AFP2 module in regulating seed germination under salt stress. Our findings reveal that SOS2 physically interacts with AFP2 and stabilizes it, leading to the degradation of the ABI5 protein, a negative transcription factor in seed germination under salt stress. This study sheds light on previously unknown connections within salt stress and ABA signaling, paving the way for novel strategies to enhance plant resilience against environmental challenges.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Estresse Salino , Sementes , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise/efeitos dos fármacos , Tolerância ao Sal/genética , Sementes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/genética , Transdução de Sinais/efeitos dos fármacos
2.
J Exp Bot ; 75(1): 391-404, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721807

RESUMO

High salinity stress promotes plant ethylene biosynthesis and triggers the ethylene signalling response. However, the precise mechanism underlying how plants transduce ethylene signalling in response to salt stress remains largely unknown. In this study, we discovered that SALT OVERLY SENSITIVE 2 (SOS2) inhibits the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) by phosphorylating the 87th serine (S87). This phosphorylation event activates the ethylene signalling response, leading to enhanced plant salt resistance. Furthermore, through genetic analysis, we determined that the loss of CTR1 or the gain of SOS2-mediated CTR1 phosphorylation both contribute to improved plant salt tolerance. Additionally, in the sos2 mutant, we observed compromised proteolytic processing of ETHYLENE INSENSITIVE 2 (EIN2) and reduced nuclear localization of EIN2 C-terminal fragments (EIN2-C), which correlate with decreased accumulation of ETHYLENE INSENSITIVE 3 (EIN3). Collectively, our findings unveil the role of the SOS2-CTR1 regulatory module in promoting the activation of the ethylene signalling pathway and enhancing plant salt tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Plantas/metabolismo , Tolerância ao Sal/fisiologia
3.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612440

RESUMO

Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.


Assuntos
Arabidopsis , Morus , Tolerância ao Sal/genética , Morus/genética , Melhoramento Vegetal , Estresse Salino , Agricultura , Plantas Geneticamente Modificadas
4.
Mol Carcinog ; 62(7): 1025-1037, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042566

RESUMO

It has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient-derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA-seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial-mesenchymal transition, and TNF-α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP-bound RAS level underwent rebound even in BI3406-sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1-targeting agents in CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Proteína SOS1/genética , Proteína SOS1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
5.
Am J Med Genet A ; 185(6): 1897-1902, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33750022

RESUMO

RASopathies are a group of syndromes with partially overlapping clinical features caused by germline mutations of the RAS/MAPK signaling pathway genes. The most common disorder is Noonan syndrome (NS; MIM 163950). We report the first prenatal case of NS with SOS2 (NM_006939.4) mutation in a euploid fetus with a severe increase in nuchal translucency (NT > 12 mm). Trio-based custom next-generation sequencing detected a de novo heterozygous missense mutation in the SOS2 gene: c.800 T > A (p.Met267Lys). Owing to the marked variable expressivity of NS and the scarcity of SOS2 mutation-related NS cases reported in the literature, it is difficult to provide appropriate genetic counseling. Several issues such as the best management technique and optimal NT cutoff have been discussed. In addition, in general, the fine balance between the advantages of an early prenatal diagnosis and the challenge of determining if the detected gene variant is pathogenic and, primarily, the stress of the counselees when providing a genetic counseling with limited information on the prenatal phenotype have been discussed. A prenatal path comprising examinations and multidisciplinary counseling is essential to support couples in a shared decision-making process.


Assuntos
Diagnóstico Precoce , Predisposição Genética para Doença , Síndrome de Noonan/diagnóstico , Proteínas Son Of Sevenless/genética , Feminino , Feto/diagnóstico por imagem , Feto/patologia , Aconselhamento Genético , Humanos , Masculino , Mutação de Sentido Incorreto , Síndrome de Noonan/diagnóstico por imagem , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Linhagem , Diagnóstico Pré-Natal
6.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205562

RESUMO

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


Assuntos
Proteína SOS1/fisiologia , Proteínas Son Of Sevenless/fisiologia , Animais , Humanos , Neoplasias/metabolismo
7.
New Phytol ; 226(3): 785-797, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901205

RESUMO

In Arabidopsis, the plasma membrane transporter PUT3 is important to maintain the cellular homeostasis of polyamines and plays a role in stabilizing mRNAs of some heat-inducible genes. The plasma membrane Na+ /H+ transporter SOS1 and the protein kinase SOS2 are two salt-tolerance determinants crucial for maintaining intracellular Na+ and K+ homeostasis. Here, we report that PUT3 genetically and physically interacts with SOS1 and SOS2, and these interactions modulate PUT3 transport activity. Overexpression of PUT3 (PUT3OE) results in hypersensitivity of the transgenic plants to polyamine and paraquat. The hypersensitivity of PUT3OE is inhibited by the sos1 and sos2 mutations, which indicates that SOS1 and SOS2 are required for PUT3 transport activity. A protein interaction assay revealed that PUT3 physically interacts with SOS1 and SOS2 in yeast and plant cells. SOS2 phosphorylates PUT3 both in vitro and in vivo. SOS1 and SOS2 synergistically activate the polyamine transport activity of PUT3, and PUT3 also modulates SOS1 activity by activating SOS2 in yeast cells. Overall, our findings suggest that both plasma-membrane proteins PUT3 and SOS1 could form a complex with the protein kinase SOS2 in response to stress conditions and modulate the transport activity of each other through protein interactions and phosphorylation.


Assuntos
Proteínas de Arabidopsis , Proteínas Serina-Treonina Quinases , Trocadores de Sódio-Hidrogênio , Antiporters , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras , Poliaminas , Proteínas Quinases
8.
New Phytol ; 227(2): 455-472, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167578

RESUMO

Histone H2B monoubiquitination (H2Bub1) is recognized as a crucial eukaryotic regulatory mechanism that controls a range of cellular processes during both development and adaptation to environmental changes. In Arabidopsis, the E2 conjugated enzymes UBIQUITIN CARRIER PROTEINs (UBCs) -1 and -2 mediate ubiquitination of H2B. Here, we elucidated the functions of UBC1 and -2 in salt-stress responses and revealed their downstream target genes. Real-time quantitative PCR assays showed that UBC1 and -2 positively regulated the salt-induced expression of MYB42 and Mitogen-Activated Protein Kinase 4 (MPK4). Chromatin immunoprecipitation assays revealed that H2Bub1 was enriched weakly on the chromatin of MYB42 and MPK4 in the ubc1,2 mutant. We further determined that UBC1/2-mediated H2Bub1 enhanced the level of histone H3 tri-methylated on K4 (H3K4me3) in the chromatin of MYB42 and MPK4 under salt-stress conditions. MPK4 interacted with and phosphorylated MYB42. The MPK4-mediated MYB42 phosphorylation enhanced the MYB42 protein stability and transcriptional activity under salt-stress conditions. We further showed that MYB42 directly bound to the SALT OVERLY SENSITIVE 2 (SOS2) promoter and mediated the rapid induction of its expression after a salt treatment. Our results indicate that UBC1 and -2 positively regulate salt-stress responses by modulating MYB42-mediated SOS2 expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Salino , Enzimas de Conjugação de Ubiquitina , Ubiquitinação , gama-Glutamil Hidrolase
9.
J Exp Bot ; 71(12): 3437-3449, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32147696

RESUMO

Heavy metal contamination is a major environmental and human health hazard in many areas of the world. Organic acids sequester heavy metals and protect plant roots from the effects of toxicity; however, it is largely unknown how these acids are regulated in response to heavy metal stress. Here, protein kinase SOS2L1 from apple was functionally characterized. MdSOS2L1 was found to be involved in the regulation of malate excretion, and to inhibit cadmium uptake into roots. Using the DUAL membrane system in a screen of an apple cDNA library with MdSOS2L1 as bait, a malate transporter, MdALMT14, was identified as an interactor. Bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays further indicated the interaction of the two proteins. Transgenic analyses showed that MdSOS2L1 is required for cadmium-induced phosphorylation at the Ser358 site of MdALMT14, a modification that enhanced the stability of the MdALMT14 protein. MdSOS2L1 was also shown to enhance cadmium tolerance in an MdALMT14-dependent manner. This study sheds light on the roles of the MdSOS2L1-MdALMT14 complex in physiological responses to cadmium toxicity.


Assuntos
Malus , Cádmio/toxicidade , Malatos , Malus/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
10.
Plant J ; 93(1): 107-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29094495

RESUMO

Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Tolerância ao Sal
11.
J Cell Physiol ; 234(8): 12786-12799, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30536836

RESUMO

Son of sevenless (SOS) is one of the guanine nucleotide exchange factors that can regulate the mitogen-activated protein kinase/extracellular signal regulated kinase signal pathway via controlling the activation of Ras. microRNAs are key regulon of gene expression and would be treated as tumor biomarkers or therapeutic targets. In this study, we find that miR-148a-3p acts as a tumor-suppressor in the development and progression of non-small-cell lung cancer (NSCLC). miR-148a-3p inhibits NSCLC cells proliferation and epithelial-mesenchymal transition by reducing the expression of SOS2, which refers Ras activating. Our findings demonstrate that the miR-148a-3p may play a significant role in NSCLC including the kind of lung cancer with K-Ras gene mutation, and it exerted the tumor inhibitor function by targeting SOS2. Because of that, miR-148a-3p and SOS2 may be an efficient target in developing more useful therapies against NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Son Of Sevenless/genética , Biomarcadores Tumorais/genética , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
12.
Curr Genomics ; 19(1): 60-69, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29491733

RESUMO

BACKGROUND: Salt Overly Sensitive (SOS) pathway is a well-known pathway in arabidopsis, essential for maintenance of ion homeostasis and thus conferring salt stress tolerance. In arabidopsis, the Ca2+ activated SOS3 interacts with SOS2 which further activates SOS1, a Na+/H+ antiporter, responsible for removing toxic sodium ions from the cells. In the present study, we have shown that these three components of SOS pathway, BjSOS1, BjSOS2 and BjSOS3 genes exhibit differential expression pattern in response to salinity and ABA stress in contrasting cultivars of Brassica. It is also noticed that constitutive expression of all the three SOS genes is higher in the tolerant cultivar B. juncea as compared to the sensitive B. nigra. In silico interaction of BjSOS2 and BjSOS3 has been reported recently and here we demonstrate in vivo interaction of these two proteins in onion epidermal peel cells. Further, overexpression of BjSOS3 in corresponding arabidopsis mutant ΔAtsos3 was able to rescue the mutant phenotype and exhibit higher tolerance towards salinity stress at the seedling stage. CONCLUSION: Taken together, these findings demonstrate that the B. juncea SOS3 (BjSOS3) protein is a functional ortholog of its arabidopsis counterpart and thus show a strong functional conservation of SOS pathway responsible for salt stress signalling between arabidopsis and Brassica species.

13.
J Med Genet ; 52(6): 413-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795793

RESUMO

BACKGROUND: Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. METHODS: A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. RESULTS: We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. CONCLUSIONS: We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome.


Assuntos
Estudos de Associação Genética , Variação Genética , Síndrome de Noonan/genética , Proteínas Son Of Sevenless/genética , Fatores de Transcrição/genética , Estudos de Coortes , Fácies , Feminino , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/diagnóstico , Linhagem , Fenótipo , Transdução de Sinais , Proteínas ras/metabolismo
14.
Hum Mutat ; 36(11): 1080-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173643

RESUMO

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


Assuntos
Estudos de Associação Genética , Mutação , Síndrome de Noonan/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Genótipo , Humanos , Masculino , Modelos Moleculares , Síndrome de Noonan/diagnóstico , Fenótipo , Conformação Proteica , Proteínas Son Of Sevenless/química , Adulto Jovem
15.
Mol Oncol ; 18(3): 641-661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073064

RESUMO

Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.


Assuntos
Acrilamidas , Adenocarcinoma de Pulmão , Compostos de Anilina , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Receptores ErbB/metabolismo , Receptores Proteína Tirosina Quinases/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Plant Physiol Biochem ; 194: 461-469, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508780

RESUMO

Sugar-alcohols are major photosynthates in plants from the Rosaceae family. Expression of the gene encoding aldose-6-phosphate reductase (Ald6PRase), the critical enzyme for glucitol synthesis in rosaceous species, is regulated by physiological and environmental cues. Additionally, Ald6PRase is inhibited by small molecules (hexose-phosphates and inorganic orthophosphate) and oxidizing compounds. This work demonstrates that Ald6PRase from peach leaves is phosphorylated in planta at the N-terminus. We also show in vitro phosphorylation of recombinant Ald6PRase by a partially purified kinase extract from peach leaves containing Ca2+-dependent protein kinases (CDPKs). Moreover, phosphorylation of recombinant Ald6PRase was inhibited by hexose-phosphates, phosphoenolpyruvate and pyrophosphate. We further show that phosphorylation of recombinant Ald6PRase was maximal using recombinant CDPKs. Overall, our results suggest that phosphorylation could fine-tune the activity of Ald6PRase.


Assuntos
Prunus persica , Fosforilação , Prunus persica/metabolismo , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Hexoses/metabolismo
17.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010887

RESUMO

We showed previously that the ABL-mediated phosphorylation of SOS1 promotes RAC activation and contributes to BCR-ABL leukemogenesis, suggesting the relevant role of SOS1 in the pathogenesis of CML. To try and obtain direct experimental evidence of the specific mechanistic implication of SOS1 in CML development, here, we combined a murine model of CML driven by a p210BCR/ABL transgene with our tamoxifen-inducible SOS1/2-KO system in order to investigate the phenotypic impact of the direct genetic ablation of SOS1 or SOS2 on the pathogenesis of CML. Our observations showed that, in contrast to control animals expressing normal levels of SOS1 and SOS2 or to single SOS2-KO mice, p210BCR/ABL transgenic mice devoid of SOS1 presented significantly extended survival curves and also displayed an almost complete disappearance of the typical hematological alterations and splenomegaly constituting the hallmarks of CML. SOS1 ablation also resulted in a specific reduction in the proliferation and the total number of colony-forming units arising from the population of bone marrow stem/progenitor cells from p210BCR/ABL transgenic mice. The specific blockade of CML development caused by SOS1 ablation in p210BCR/ABL mice indicates that SOS1 is critically required for CML pathogenesis and supports the consideration of this cellular GEF as a novel, alternative bona fide therapeutic target for CML treatment in the clinic.

18.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946974

RESUMO

Prior reports showed the critical requirement of Sos1 for epithelial carcinogenesis, but the specific functionalities of the homologous Sos1 and Sos2 GEFs in skin homeostasis and tumorigenesis remain unclear. Here, we characterize specific mechanistic roles played by Sos1 or Sos2 in primary mouse keratinocytes (a prevalent skin cell lineage) under different experimental conditions. Functional analyses of actively growing primary keratinocytes of relevant genotypes-WT, Sos1-KO, Sos2-KO, and Sos1/2-DKO-revealed a prevalent role of Sos1 regarding transcriptional regulation and control of RAS activation and mechanistic overlapping of Sos1 and Sos2 regarding cell proliferation and survival, with dominant contribution of Sos1 to the RAS-ERK axis and Sos2 to the RAS-PI3K/AKT axis. Sos1/2-DKO keratinocytes could not grow under 3D culture conditions, but single Sos1-KO and Sos2-KO keratinocytes were able to form pseudoepidermis structures that showed disorganized layer structure, reduced proliferation, and increased apoptosis in comparison with WT 3D cultures. Remarkably, analysis of the skin of both newborn and adult Sos2-KO mice uncovered a significant reduction of the population of stem cells located in hair follicles. These data confirm that Sos1 and Sos2 play specific, cell-autonomous functions in primary keratinocytes and reveal a novel, essential role of Sos2 in control of epidermal stem cell homeostasis.

19.
J Exp Clin Cancer Res ; 40(1): 280, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479623

RESUMO

BACKGROUND: Recurrent hepatocellular carcinoma (HCC) shows strong resistance to sorafenib, and the tumor-repopulating cells (TRCs) with cancer stem cell-like properties are considered a driver for its high recurrent rate and drug resistance. METHODS: Suppression of TRCs may thus be an effective therapeutic strategy for treating this fatal disease. We evaluated the pharmacology and mechanism of sulfarotene, a new type of synthetic retinoid, on the cancer stem cell-like properties of HCC TRCs, and assessed its preclinical efficacy in models of HCC patient-derived xenografts (PDXs). RESULTS: Sulfarotene selectively inhibited the growth of HCC TRCs in vitro and significantly deterred TRC-mediated tumor formation and lung metastasis in vivo without apparent toxicity, with an IC50 superior to that of acyclic retinoid and sorafenib, to which the recurrent HCC exhibits significant resistance at advanced stage. Sulfarotene promoted the expression and activation of RARα, which down-regulated SOS2, a key signal mediator associated with RAS activation and signal transduction involved in multiple downstream pathways. Moreover, sulfarotene selectively inhibited tumorigenesis of HCC PDXs with high expression for SOS2. CONCLUSIONS: Our study identified sulfarotene as a selective inhibitor for the TRCs of HCC, which targets a novel RARα-SOS2-RAS signal nexus, shedding light on a new, promising strategy of target therapy for advanced liver cancer.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Retinoides/uso terapêutico , Proteínas Son Of Sevenless/efeitos dos fármacos , Sorafenibe/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Retinoides/farmacologia , Transdução de Sinais , Sorafenibe/farmacologia
20.
Genes (Basel) ; 12(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924994

RESUMO

The RAS family of oncogenes (HRAS, NRAS, and KRAS) are among the most frequently mutated protein families in cancers. RAS-mutated tumors were originally thought to proliferate independently of upstream signaling inputs, but we now know that non-mutated wild-type (WT) RAS proteins play an important role in modulating downstream effector signaling and driving therapeutic resistance in RAS-mutated cancers. This modulation is complex as different WT RAS family members have opposing functions. The protein product of the WT RAS allele of the same isoform as mutated RAS is often tumor-suppressive and lost during tumor progression. In contrast, RTK-dependent activation of the WT RAS proteins from the two non-mutated WT RAS family members is tumor-promoting. Further, rebound activation of RTK-WT RAS signaling underlies therapeutic resistance to targeted therapeutics in RAS-mutated cancers. The contributions of WT RAS to proliferation and transformation in RAS-mutated cancer cells places renewed interest in upstream signaling molecules, including the phosphatase/adaptor SHP2 and the RasGEFs SOS1 and SOS2, as potential therapeutic targets in RAS-mutated cancers.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas ras/genética , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA