RESUMO
Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.
Assuntos
Proteínas de Membrana Transportadoras , Estresse Oxidativo , Paraplegia Espástica Hereditária , Animais , Axônios/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Estresse Oxidativo/genética , Paraplegia Espástica Hereditária/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Hereditary spastic paraplegias (HSPs) are a heterogeneous group of rare neurodegenerative disorders affecting the corticospinal tracts, and more than 80 HSP loci have been mapped to cause HSP. In this study, we aim to perform a genetic and clinical study of ten (6 male, 4 female) sporadic Chinese HSP patients. METHODS: Next-generation sequencing (NGS) gene panels combined with multiplex ligation-dependent probe amplification assay (MLPA) analysis and the trinucleotide repeat dynamic mutation detection are available for the ten patients. RESULTS: Among the 10 patients, one SPG7 patient, one SPG11 patient, and one pure SPG31 patient were detected. Two variants (deletion of exon 3-9 of SPG7 gene and the heterozygous mutation c.1861C > T/p.Q621* of SPG11 gene) were novel and three (c.1150_1150 + 1insCTAC/p.G384Afs*13 in SPG7 gene, c.3075dupA/p.E1026Rfs*4 in SPG11 gene, and c.478delA/p.R160Gfs*63 of REEP1 gene/SPG31) were previously reported. The SPG11 patient presented mild intellectual with peripheral neuropathy and thin corpus callosum (TCC) with no white matter abnormalities (WMA). The SPG7 patient detected in this study is the third SPG7 family reported in China; he manifested peripheral neuropathy, scoliosis, and polydactyly which expand the phenotype spectrum of SPG7. CONCLUSIONS: The AAO overlapped among each HSP subtype, which limited the ability to predict the subtype of HSP from AAO. Compared with non-Asian patients, the mutation frequency of SPG7 is relatively low in Asian populations. Considering the varieties of mutation types of HSP, we suggested targeted sequencing gene panels should be combined with MLPA for diagnosis of HSP.
Assuntos
Paraplegia Espástica Hereditária , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Fenótipo , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genéticaRESUMO
Background and objectives: The aim of this study is to provide a comprehensive characterization of a large Estonian family spanning five generations with seventeen individuals affected by spastic paraplegia associated with a novel variant in the receptor expression-enhancing protein-1 (REEP1) gene. Methods: Comprehensive clinical evaluation, neuroimaging, and neurophysiological studies were performed on six patients who provided oral and written consent. Whole-exome sequencing was performed on the index case. Targeted carrier testing was done in all other available affected and at-risk relatives. Results: Four individuals presented with pure spastic paraplegia, with onset from early childhood to adult age. None had bladder or bowel dysfunction. Two subjectively asymptomatic mutation carriers displayed pyramidal signs on examination. Imaging of the neuroaxis was normal in three patients, three had MRI findings interpreted as unrelated. Motor evoked potential (MEP) was abnormal in five; the patient with the longest disease duration had additional somatosensory evoked potential (SSEP) abnormalities. The novel splice-site variant, c.32 + 1G > C in the REEP1 gene, found in the index case, co-segregates with disease in the family. Expressivity in this family is variable. Conclusion: Our findings are in keeping with previous descriptions of the SPG31 spectrum. The phenotype associated with splice variants is not necessarily more severe than other conventional REEP1 variants. As for other forms of familial spastic paraplegias, the factors modulating variable expressivity in SPG31 are still unknown.
RESUMO
OBJECTIVE: To estimate the proportion and spectrum of infrequent autosomal dominant spastic paraplegias in a group of families with DNA-confirmed diagnosis and to investigate their molecular and clinical characteristics. MATERIAL AND METHODS: Ten families with 6 AD-SPG: SPG6 (n=1), SPG8 (n=2), SPG9A (n=1), SPG12 (n=1), SPG17 (n=3), SPG31 (n=2) were studied using clinical, genealogical, molecular-genetic (massive parallel sequencing, spastic paraplegia panel, whole-exome sequencing, multiplex ligation-dependent amplification, Sanger sequencing) and bioinformatic methods. RESULTS AND CONCLUSION: Nine heterozygous mutations were detected in 6 genes, including the common de novo mutation p.Gly106Arg in NIPA1 (SPG6), the earlier reported mutation p.Val626Phe in WASHC5 (SPG8) in isolated case and the novel p.Val695Ala in WASHC5 (SPG8) in a family with 4 patients, the novel mutation p.Thr301Arg in RTN2 (SPG12) in a family with 2 patients, the novel mutation c.105+4A>G in REEP1 (SPG31) in a family with 4 patients and the reported earlier p.Lys101Lys in REEP1 (SPG31) in a family with 3 patients, the known de novo mutation p.Arg252Gln in ALDH18A1 (SPG9A) in two monozygous twins; the common mutation p.Ser90Leu in BSCL2 (SPG17) in a family with 3 patients and in isolated case, reported mutation p.Leu363Pro in a family with 2 patients. SPG6, SPG8, SPG12 and SPG31 presented 'pure' phenotypes, SPG31 had most benign course. Age of onset varied in SPG31 family and was atypically early in SPG6 case. Patients with SPG9A and SPG17 had 'complicated' paraplegias; amyotrophy of hands typical for SPG17 was absent in a child and in an adolescent from 2 families, but may develop later.
Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Paraplegia Espástica Hereditária , Adolescente , Criança , Heterozigoto , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genéticaRESUMO
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of genetic disorders with spastic paraparesis as the main clinical feature. Complex forms may co-occur with other motor, sensory, and cognitive impairment. A growing number of loci and genes are being identified, but still more than 50% of the patients remain without molecular diagnosis. We present a Spanish family with autosomal dominant HSP and intellectual disability (ID) in which we found a possible dual genetic diagnosis with incomplete penetrance and variable expressivity in the parents and three siblings: a heterozygous duplication of 15q11.2-q13.1 found by array CGH and a novel missense heterozygous change in REEP1 [c.73A>G; p.(Lys25Glu)] found by whole exome sequencing (WES). Following the standard genetic diagnosis approach in ID, array CGH analysis was first performed in both brothers affected by spastic paraparesis and ID from school age, and a heterozygous duplication of 15q11.2-q13.1 was found. Subsequently, the duplication was also found in the healthy mother and in the sister, who presented attention deficit/hyperactivity disorder (ADHD) symptoms from school age and pes cavus with mild pyramidal signs at 22 years of age. Methylation analysis revealed that the three siblings carried the duplication unmethylated in the maternal allele, whereas their mother harbored it methylated in her paternal allele. Functional studies revealed an overexpression of UBE3A and ATP10A in the three siblings, and the slightest cognitive phenotype of the sister seems to be related to a lower expression of ATP10A. Later, searching for the cause of HSP, WES was performed revealing the missense heterozygous variant in REEP1 in all three siblings and the father, who presented subtle pyramidal signs in the lower limbs as well as the sister. Our findings reinforce the association of maternally derived UBE3A overexpression with neurodevelopmental disorders and support that a spectrum of clinical severity is present within families. They also reveal that a dual genetic diagnosis is possible in patients with presumed complex forms of HSP and cognitive impairment.
RESUMO
SPG31 is a hereditary spastic paraplegia (HSP) caused by pathogenic variants in the REEP1 gene. The phenotype (SPG31) has occasionally been described with peripheral nervous system involvement, in additional to the gradually progressing lower limb spasticity that characterizes HSP. The objective of this study was to characterize patients with pathogenic REEP1 variants and neurophysiologically assess the extent of peripheral nerve involvement in this patient group. Thirty-eight index cases were molecular-genetically tested, yielding two previously reported pathogenic REEP1 variants and a novel missense variant, in a total of four index patients. Three of four probands and five additional family members underwent nerve conduction studies, electromyography, quantitative sensory testing, and examination of the autonomic nervous system. None of the examined patients had completely unremarkable results of peripheral nerve studies. Most showed electrophysiological signs of carpal tunnel syndrome, and one patient demonstrated a multifocal compression neuropathy. Autonomic testing revealed no severe dysfunction, and findings were limited to adrenergic function. HSP caused by pathogenic REEP1 variants may be accompanied by a generally mild and subclinical polyneuropathy with a predisposition to compression neuropathy, and should be considered in such cases.
Assuntos
Proteínas de Membrana Transportadoras/genética , Condução Nervosa/fisiologia , Polineuropatias , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Síndrome do Túnel Carpal/etiologia , Síndrome do Túnel Carpal/fisiopatologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polineuropatias/etiologia , Polineuropatias/genética , Polineuropatias/fisiopatologia , Paraplegia Espástica Hereditária/complicações , Paraplegia Espástica Hereditária/fisiopatologia , Adulto JovemRESUMO
A group of hereditary spastic paraplegias includes about 80 spastic paraplegia genes (SPG): forms with identified (almost 70) or only mapped (about 10) genes. Methods of next generation sequencing (NGS), along with new SPG discovering, modify knowledge about earlier delineated SPG. Clinical and genetic characteristics of common autosomal dominant (SPG4, SPG3, SPG31) and autosomal recessive (SPG11, SPG7, SPG15) forms are presented.
Assuntos
Paraplegia Espástica Hereditária , Humanos , Mutação , ProteínasRESUMO
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by weakness and spasticity of the lower extremities. HSPs are heterogeneous disorders that involve over 80 causative genes. The frequency of HSPs is estimated to be 10â»100/1,000,000. With this background, the Japanese research group "Japan Spastic Paraplegia Research Consortium: JASPAC" was organized in 2006 to elucidate the molecular epidemiologies of HSPs in Japan and the molecular pathologies of HSPs. To date, the JASPAC has collected 714 HSP families and analyzed 488 index patients. We found 279 pathogenic variants or probable pathogenic variants of causative genes in the 488 HSP patients. According to our results, we found 178 families with autosomal dominant patients (65%), and 101 with autosomal recessive and sporadic patients (48%). We found 119 patients with SPG4, 17 with SPG3A, 15 with SPG31, 13 with SPG11, and 11 with SPG10. Other HSP genes were the cause in less than five patients. On the other hand, we could not find causative genes in 35% of the autosomal dominant patients, or 52% of the autosomal recessive and sporadic patients. We are now trying to find new causative genes and elucidate the molecular mechanisms underlying HSPs.
RESUMO
Mutations in REEP1 have been identified in three types of neurological disorders, autosomal dominant form of Hereditary Spastic Paraplegia type 31 (SPG31), autosomal dominant distal hereditary motor neuronopathy type VB (HMN5B), and autosomal recessive form of congenital axonal neuropathy and diaphragmatic palsy. Previous studies demonstrated different molecular pathogenesis in SPG31, including loss-of-function, gain-of-function and haploinsufficiency. A four-generation family from Japan, including 12 members, was investigated clinically and genetically. Seven affected members displayed pure spastic paraplegia. Impression of genetic anticipation was observed in the family, including tendency of earlier age-at-onset and increasing severity in subsequent generations. Genetic analysis revealed a heterozygous intronic variant, c.303+2T > A, in REEP1, which segregated with disease, and was also identified in one unaffected member. The variant causes exon 4 skipping leading to frame shift and a truncated transcript identified by complementary DNA sequencing of reverse transcription polymerase chain reaction products. Measurement of REEP1 transcripts in lymphocytes demonstrated a reduction through nonsense mediated mRNA decay (NMD). Our study demonstrated further evidence of allelic heterogeneity in SPG31, mutant REEP1 mRNA dosage effects through NMD and intra-familial phenotype variability.