Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Colloids Surf A Physicochem Eng Asp ; 647: 128967, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35466287

RESUMO

The adsorption process of SARS-CoV-2 Omicron spike protein to the nano-gold colloid surfaces was examined by monitoring the surface plasmon resonance (SPR) band shift of gold-nano particles ranging between diameters of d = 10-100 nm. The externally changed pH between 3 and 11 at 24.5 ± 0.4 °C initiated a reversible formation of the gold colloid aggregates, where formation/deformation of the aggregates were monitored by red/blue shift of the peak of the SPR band. There was no sign of reversible aggregation for d = 10, 15, and 20 nm gold colloids. A clear undulation of the peak shift corresponding to pH hopping between pH ~3 and ~11 was confirmed for colloidal d > 30 nm. This degree of the reversibility was compared to previously reported SARS-CoV-2 Alpha spike protein coated gold colloids. It was concluded that Omicron spike protein possesses a similar low affinity for gold nano particle d < 20 nm and possesses the higher affinity to the gold nanoparticles of d > 30 nm. However, the Omicron spike protein conformation was presumed to be more denatured compared to the SARS-CoV-2 Alpha spike protein. Our finding suggested Omicron spike protein was more acid labile/flexible.

2.
Colloids Surf A Physicochem Eng Asp ; 615: 126275, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33564211

RESUMO

Gold nano-particles were coated with the spike protein (S protein) of SARS-CoV-2 and exposed to increasingly acidic conditions. Their responses were investigated by monitoring the surface plasmon resonance (SPR) band shift. As the external pH was gradually changed from neutral pH to pH ∼2 the peak of the SPR band showed a significant red-shift, with a sigmoidal feature implying the formation of the gold-protein aggregates. The coating of S protein changed the surface property of the gold enough to extract the coverage fraction of protein over nano particles, Θ, which did not exhibit clear nano-size dependence. The geometrical simulation to explain Θ showed the average axial length to be a = 7. 25 nm and b =8.00 nm when the S-protein was hypothesized as a prolate shape with spiking-out orientation. As the pH value externally hopped between pH∼3 and pH∼10, a behavior of reversible protein folding was observed for particles with diameters >30 nm. It was concluded that S protein adsorption conformation was impacted by the size (diameter, d) of a core nano-gold, where head-to-head dimerized S protein was estimated for d ≤ 80 nm and a parallel in opposite directions formation for d = 100 nm.

3.
Q Rev Biophys ; 51: e10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912486

RESUMO

The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.


Assuntos
Antineoplásicos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Simulação por Computador , Bicarbonatos/química , Domínio Catalítico , Estabilidade Enzimática , Humanos , Cinética , Estrutura Molecular , Isoformas de Proteínas/química , Sulfonamidas/química , Termodinâmica
4.
Biosci Biotechnol Biochem ; 82(2): 312-319, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29316860

RESUMO

Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE.


Assuntos
Citotoxinas/química , Citotoxinas/toxicidade , Piridinas/química , Piridinas/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Animais , Gliceraldeído/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
5.
Biochim Biophys Acta ; 1838(12): 3191-202, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218402

RESUMO

Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3 has been detected at the outer leaflet of the plasma membrane and its membrane expression is a risk factor in a number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains unclear. We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bilayer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd=9.2×10(-7)M) thanks to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the POPC lipids. HNE binds in a significantly weaker manner (Kd>10(-5)M) making mostly electrostatic interactions via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil membrane.

6.
J Mol Recognit ; 28(1): 49-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26268370

RESUMO

Receptor for activated C-kinase 1 (RACK1) is an intracellular scaffolding protein involved in a multitude of signalling pathways. The cytoskeleton is fundamental for intracellular cell signalling as it forms an interconnected network of regulatory proteins. Here, spectrin is a central component as it forms the actin-spectrin network that serves as docking surfaces for cellular components. The interaction between RACK1 and components of spectrin, the single spectrin repeats R16, R17 and the double spectrin repeat R1617 from the α-spectrin chain were investigated by biosensor technology and docking analysis. RACK1 associated only weakly to R16 (KD = 1.0 ± 0.5 × 10(-6) M), about 20 times stronger to R1617 (KD = 5.3 ± 0.7 × 10(-8) M) and 100 times stronger to R17 (KD = 0.9 ± 0.3 × 10(-8) M). Docking analysis showed that while R16 alone preferentially docked with its B-helix, R17 docked through its A-helix and BC loop. The double repeat and RACK1 mainly formed two different complex conformations. R1617 docked tangentially to the N/C-terminal of RACK1 or radially along a groove on the outer surface of RACK1. These configurations could account for the slight increase in entropic and the decrease in enthalpic interactions for the R1617-RACK1 interaction, compared with the interactions of RACK1 to the two single repeats. Our results suggest a mode of interaction that allows spectrin to attach to the N/C part of RACK through the inter-helical AB and BC loops and adopt a multitude of configurations in between the two limiting configurations.


Assuntos
Aminoácidos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Espectrina/metabolismo , Aminoácidos/química , Proteínas de Ligação ao GTP/genética , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética , Termodinâmica
7.
RNA Biol ; 11(10): 1250-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584704

RESUMO

Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its ß-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.


Assuntos
Motivos de Aminoácidos/genética , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Dicroísmo Circular , Proteínas ELAV/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
8.
J Biochem ; 174(5): 433-440, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37500079

RESUMO

RNA aptamersare nucleic acids that are obtained using the systematic evolution of ligands by exponential enrichment (SELEX) method. When using conventional selection methods to immobilize target proteins on matrix beads using protein tags, sequences are obtained that bind not only to the target proteins but also to the protein tags and matrix beads. In this study, we performed SELEX using ß-1,3-glucan recognition protein (GRP)-tags and curdlan beads to immobilize the acute myeloid leukaemia 1 (AML1) Runt domain (RD) and analysed the enrichment of aptamers using high-throughput sequencing. Comparison of aptamer enrichment using the GRP-tag and His-tag suggested that aptamers were enriched using the GRP-tag as well as using the His-tag. Furthermore, surface plasmon resonance analysis revealed that the aptamer did not bind to the GRP-tag and that the conjugation of the GRP-tag to RD weakened the interaction between the aptamer and RD. The GRP-tag could have acted as a competitor to reduce weakly bound RNAs. Therefore, the affinity system of the GRP-tagged proteins and curdlan beads is suitable for obtaining specific aptamers using SELEX.


Assuntos
Aptâmeros de Nucleotídeos , beta-Glucanas , Glucanos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , RNA , Ligantes
9.
Int J Pharm X ; 5: 100157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36687375

RESUMO

Antibody-based T cell-activating biologics are promising therapeutic medicines being developed for a number of indications, mainly in the oncology field. Among those, T cell bispecific antibodies are designed to bind one tumor-specific antigen and the T cell receptor at the same time, leading to a robust T cell response against the tumor. Although their unique format and the versatility of the CrossMab technology allows for the generation of safer molecules in an efficient manner, product-related variants cannot be completely avoided. Therefore, it is of extreme importance that both a manufacturing process that limits or depletes product-related impurities, as well as a thorough analytical characterization are in place, starting from the development of the manufacturing cell line until the assessment of potential toxicities. Here, we describe such an end-to-end approach to minimize, quantify and control impurities and -upon their functional characterization- derive specifications that allow for the release of clinical material.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36568260

RESUMO

Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes. Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation. The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.

11.
Comput Struct Biotechnol J ; 20: 2322-2331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615014

RESUMO

As one of the most studied Apicomplexan parasite Cryptosporidium, Cryptosporidium parvum (C. parvum) causes worldwide serious diarrhea disease cryptosporidiosis, which can be deadly to immunodeficiency individuals, newly born children, and animals. Proteome-wide identification of protein-protein interactions (PPIs) has proven valuable in the systematic understanding of the genome-phenome relationship. However, the PPIs of C. parvum are largely unknown because of the limited experimental studies carried out. Therefore, we took full advantage of three bioinformatics methods, i.e., interolog mapping (IM), domain-domain interaction (DDI)-based inference, and machine learning (ML) method, to jointly predict PPIs of C. parvum. Due to the lack of experimental PPIs of C. parvum, we used the PPI data of Plasmodium falciparum (P. falciparum), which owned the largest number of PPIs in Apicomplexa, to train an ML model to infer C. parvum PPIs. We utilized consistent results of these three methods as the predicted high-confidence PPI network, which contains 4,578 PPIs covering 554 proteins. To further explore the biological significance of the constructed PPI network, we also conducted essential network and protein functional analysis, mainly focusing on hub proteins and functional modules. We anticipate the constructed PPI network can become an important data resource to accelerate the functional genomics studies of C. parvum as well as offer new hints to the target discovery in developing drugs/vaccines.

12.
Comput Struct Biotechnol J ; 20: 5790-5812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382179

RESUMO

The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.

13.
Comput Struct Biotechnol J ; 19: 3491-3506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194673

RESUMO

The L-arginine biosynthesis pathway consists of eight enzymes that catalyse the conversion of L-glutamate to L-arginine. Arginine auxotrophs (argB/argF deletion mutants) of Mycobacterium tuberculosis are rapidly sterilised in mice, while inhibition of ArgJ with Pranlukast was found to clear chronic M. tuberculosis infection in a mouse model. Enzymes in the arginine biosynthetic pathway have therefore emerged as promising targets for anti-tuberculosis drug discovery. In this work, the ligandability of four enzymes of the pathway ArgB, ArgC, ArgD and ArgF is assessed using a fragment-based approach. We identify several hits against these enzymes validated with biochemical and biophysical assays, as well as X-ray crystallographic data, which in the case of ArgB were further confirmed to have on-target activity against M. tuberculosis. These results demonstrate the potential for more enzymes in this pathway to be targeted with dedicated drug discovery programmes.

14.
Saudi J Biol Sci ; 28(2): 1226-1232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613051

RESUMO

Some nanoscale morphologies of titanium oxide nanostructures blend with gold nanoparticles and act as satellites and targeted weapon methodologies in biomedical applications. Simultaneously, titanium oxide can play an important role when combined with gold after blending with polyethylene glycol (PEG). Our experimental approach is novel with respect to the plasmonic role of metal nanoparticles as an efficient PDT drug. The current experimental strategy floats the comprehensive and facile way of experimental strategy on the critical influence that titanium with gold nanoparticles used as novel photosensitizing agents after significant biodistribution of proposed nanostructures toward targeted site. In addition, different morphologies of PEG-coated Au-doped titanium nanostructures were shown to provide various therapeutic effects due to a wide range of electromagnetic field development. This confirms a significantly amplified population of hot electron generation adjacent to the interface between Au and TiO2 nanostructures, leading to maximum cancerous cell injury in the MCF-7 cell line. The experimental results were confirmed by applying a least squares fit math model which verified our results with 99% goodness of fit. These results can pave the way for comprehensive rational designs for satisfactory response of performance phototherapeutic model mechanisms along with new horizons of photothermal therapy (HET) and photodynamic therapy (HET) operating under visible and near-infrared (NIR) light.

15.
Acta Pharm Sin B ; 11(9): 2655-2669, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589387

RESUMO

Peptide inhibition of the interactions of the tumor suppressor protein P53 with its negative regulators MDM2 and MDMX activates P53 in vitro and in vivo, representing a viable therapeutic strategy for cancer treatment. Using phage display techniques, we previously identified a potent peptide activator of P53, termed PMI (TSFAEYWNLLSP), with binding affinities for both MDM2 and MDMX in the low nanomolar concentration range. Here we report an ultrahigh affinity, dual-specificity peptide antagonist of MDM2 and MDMX obtained through systematic mutational analysis and additivity-based molecular design. Functional assays of over 100 peptide analogs of PMI using surface plasmon resonance and fluorescence polarization techniques yielded a dodecameric peptide termed PMI-M3 (LTFLEYWAQLMQ) that bound to MDM2 and MDMX with K d values in the low picomolar concentration range as verified by isothermal titration calorimetry. Co-crystal structures of MDM2 and of MDMX in complex with PMI-M3 were solved at 1.65 and 3.0 Å resolution, respectively. Similar to PMI, PMI-M3 occupied the P53-binding pocket of MDM2/MDMX, which was dominated energetically by intermolecular interactions involving Phe3, Tyr6, Trp7, and Leu10. Notable differences in binding between PMI-M3 and PMI were observed at other positions such as Leu4 and Met11 with MDM2, and Leu1 and Met11 with MDMX, collectively contributing to a significantly enhanced binding affinity of PMI-M3 for both proteins. By adding lysine residues to both ends of PMI and PMI-M3 to improve their cellular uptake, we obtained modified peptides termed PMI-2K (KTSFAEYWNLLSPK) and M3-2K (KLTFLEYWAQLMQK). Compared with PMI-2K, M3-2K exhibited significantly improved antitumor activities in vitro and in vivo in a P53-dependent manner. This super-strong peptide inhibitor of the P53-MDM2/MDMX interactions may become, in its own right, a powerful lead compound for anticancer drug development, and can aid molecular design of other classes of P53 activators as well for anticancer therapy.

16.
Saudi J Biol Sci ; 28(4): 2229-2235, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33935565

RESUMO

Cheeseweed mallow (Malva parviflora L.) was used to biosynthesize silver nanoparticles. The biosynthesized silver nanoparticles were classified by UV-vis Spectroscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). The shape and size distribution were visualized by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Zeta potential analysis. The chemical composition of M. parviflora leaf extract was identified by Gas Chromatography and Mass Spectroscopy (GC/MS). Finally, in vitro antifungal assay was done to assess the potential of biosynthesized silver nanoparticles and crude leaf extract of M. parviflora for inhibiting the mycelial growth of phytopathogenic fungi. The UV-vis analysis manifests the formation of silver nanoparticles. FTIR analysis established that chemicals of the leaf extract stabilized the biosynthesized silver nanoparticles by binding with the free silver ions. The TEM, FE-SEM and zeta potential analyzer confirmed that the biosynthesized silver nanoparticles were mostly spherical with an average diameter of 50.6 nm. The biosynthesized silver nanoparticles and leaf extract of M. parviflora effectively mitigate the mycelial growth of Helminthosporium rostratum, Fusarium solani, Fusarium oxysporum, and Alternaria alternata. The maximum reduction in mycelial growth by biosynthesized nanoparticles was observed against H. rostratum (88.6%). Whereas, the leaf extract of M. parviflora was most effective against F. solani (65.3%). Thus, the biosynthesis of nanoparticle assisted by M. parviflora is a feasible and eco-friendly method for the synthesis of silver nanoparticles. Further the silver nanoparticles and leaf extract of M. parviflora could be explored for the development of the fungicide.

17.
Biotechnol Rep (Amst) ; 29: e00585, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511040

RESUMO

This study examines the effects of nanoparticle inclusion in instantaneous saccharification and fermentation (NIISF) of waste potato peels. The effect of nanoparticle inclusion on the fermentation process was investigated at different stages which were: pre-treatment, liquefaction, saccharification and fermentation. Inclusion of NiO NPs at the pre-treatment stage gave a 1.60-fold increase and 2.10-fold reduction in bioethanol and acetic acid concentration respectively. Kinetic data on the bioethanol production fit the modified Gompertz model (R 2 > 0.98). The lowest production lag time (t L) of 1.56 h, and highest potential bioethanol concentration (P m) of 32 g/L were achieved with NiO NPs inclusion at different process stages; the liquefaction stage and the pre-treatment phase, respectively. Elevated bioethanol yield, coupled with substantial reduction in process inhibitors in the NIISF processes, demonstrated the significance of point of nanobiocatalysts inclusion for the scale-up development of bioethanol production from potato peels.

18.
Acta Pharm Sin B ; 11(7): 1853-1866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386324

RESUMO

Mitochondrial shape rapidly changes by dynamic balance of fusion and fission to adjust to constantly changing energy demands of cancer cells. Mitochondrial dynamics balance is exactly regulated by molecular motor consisted of myosin and actin cytoskeleton proteins. Thus, targeting myosin-actin molecular motor is considered as a promising strategy for anti-cancer. In this study, we performed a proof-of-concept study with a natural-derived small-molecule J13 to test the feasibility of anti-cancer therapeutics via pharmacologically targeting molecular motor. Here, we found J13 could directly target myosin-9 (MYH9)-actin molecular motor to promote mitochondrial fission progression, and markedly inhibited cancer cells survival, proliferation and migration. Mechanism study revealed that J13 impaired MYH9-actin interaction to inactivate molecular motor, and caused a cytoskeleton-dependent mitochondrial dynamics imbalance. Moreover, stable isotope labeling with amino acids in cell culture (SILAC) technology-coupled with pulldown analysis identified HSPA9 as a crucial adaptor protein connecting MYH9-actin molecular motor to mitochondrial fission. Taken together, we reported the first natural small-molecule directly targeting MYH9-actin molecular motor for anti-cancer translational research. Besides, our study also proved the conceptual practicability of pharmacologically disrupting mitochondrial fission/fusion dynamics in human cancer therapy.

19.
Acta Pharm Sin B ; 11(10): 3134-3149, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34745852

RESUMO

Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.

20.
Acta Pharm Sin B ; 11(1): 222-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33072499

RESUMO

Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed via the gastrointestinal tract and formed via biotransformation in human, respectively. Together with data from screening by comprehensive 2D angiotensin-converting enzyme 2 (ACE2) biochromatography, 8 components in LHQW that were exposed to human and had potential ACE2 targeting ability were identified for further pharmacodynamic evaluation. Results show that rhein, forsythoside A, forsythoside I, neochlorogenic acid and its isomers exhibited high inhibitory effect on ACE2. For the first time, this study provides chemical and biochemical evidence for exploring molecular mechanisms of therapeutic effects of LHQW capsule for the treatment of COVID-19 patients based on the components exposed to human. It also demonstrates the utility of the human exposure-based approach to identify pharmaceutically active components in Chinese herb medicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA