Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153836

RESUMO

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Assuntos
Regulação da Expressão Gênica , Lipogênese , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
2.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595559

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Assuntos
Arginina , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fatores de Processamento de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Humanos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
3.
Mol Cell ; 81(9): 1890-1904.e7, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33657401

RESUMO

O-linked ß-N-acetyl glucosamine (O-GlcNAc) is attached to proteins under glucose-replete conditions; this posttranslational modification results in molecular and physiological changes that affect cell fate. Here we show that posttranslational modification of serine/arginine-rich protein kinase 2 (SRPK2) by O-GlcNAc regulates de novo lipogenesis by regulating pre-mRNA splicing. We found that O-GlcNAc transferase O-GlcNAcylated SRPK2 at a nuclear localization signal (NLS), which triggers binding of SRPK2 to importin α. Consequently, O-GlcNAcylated SRPK2 was imported into the nucleus, where it phosphorylated serine/arginine-rich proteins and promoted splicing of lipogenic pre-mRNAs. We determined that protein nuclear import by O-GlcNAcylation-dependent binding of cargo protein to importin α might be a general mechanism in cells. This work reveals a role of O-GlcNAc in posttranscriptional regulation of de novo lipogenesis, and our findings indicate that importin α is a "reader" of an O-GlcNAcylated NLS.


Assuntos
Neoplasias da Mama/metabolismo , Glucose/metabolismo , Lipogênese , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/genética , Proliferação de Células , Feminino , Glicosilação , Células HEK293 , Humanos , Células MCF-7 , Camundongos Nus , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Carga Tumoral , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
4.
Cancer Lett ; 598: 217088, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945203

RESUMO

The causal link between long terminal repeat (LTR) retrotransposon-derived lncRNAs and hepatocellular carcinoma (HCC) remains elusive and whether these cancer-exclusive lncRNAs contribute to the effectiveness of current HCC therapies is yet to explore. Here, we investigated the activation of LTR retrotransposon-derived lncRNAs in a broad range of liver diseases. We found that LTR retrotransposon-derived lncRNAs are mainly activated in HCC and is correlated with the proliferation status of HCC. Furthermore, we discovered that an LTR retrotransposon-derived lncRNA, LINC01446, exhibits specific expression in HCC. HCC patients with higher LINC01446 expression had shorter overall survival times. In vitro and in vivo assays showed that LINC01446 promoted HCC growth and angiogenesis. Mechanistically, LINC01446 bound to serine/arginine protein kinase 2 (SRPK2) and activated its downstream target, serine/arginine splicing factor 1 (SRSF1). Furthermore, activation of the SRPK2-SRSF1 axis increased the splicing and expression of VEGF isoform A165 (VEGFA165). Notably, inhibiting LINC01446 expression dramatically impaired tumor growth in vivo and resulted in better therapeutic outcomes when combined with antiangiogenic agents. In addition, we found that the transcription factor MESI2 bound to the cryptic MLT2B3 LTR promoter and drove LINC01446 transcription in HCC cells. Taken together, our findings demonstrate that LTR retrotransposon-derived LINC01446 promotes the progression of HCC by activating the SRPK2/SRSF1/VEGFA165 axis and highlight targeting LINC01446 as a potential therapeutic strategy for HCC patients.

5.
Front Genet ; 13: 902718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719374

RESUMO

SR Protein Kinases (SRPKs), discovered approximately 30 years ago, are widely known as splice factor kinases due to their decisive involvement in the regulation of various steps of mRNA splicing. However, they were also shown to regulate diverse cellular activities by phosphorylation of serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Over the last decade, SRPK1 has been reported as both tumor suppressor and promoter, depending on the cellular context and has been implicated in both chemotherapy sensitivity and resistance. Moreover, SRPK2 has been reported to exhibit contradictory functions in different cell contexts promoting either apoptosis or tumor growth. The aim of the current review is to broaden and deepen our understanding of the SRPK function focusing on the subcellular localization of the kinases. There is ample evidence that the balance between cytoplasmic and nuclear SRPK levels is tightly regulated and determines cell response to external signals. Specific cell states coupled to kinase levels, spatial specific interactions with substrates but also changes in the extent of phosphorylation that allow SRPKs to exhibit a rheostat-like control on their substrates, could decide the proliferative or antiproliferative role of SRPKs.

6.
Front Genet ; 13: 979735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212152

RESUMO

Melanoma is one of the most aggressive tumors, and its lethality is associated with the ability of malignant cells to migrate and invade surrounding tissues to colonize distant organs and to generate widespread metastasis. The serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2) are classically related to the control of pre-mRNA splicing through SR protein phosphorylation and have been found overexpressed in many types of cancer, including melanoma. Previously, we have demonstrated that the pharmacological inhibition of SRPKs impairs pulmonary colonization of metastatic melanoma in mice. As the used compounds could target at least both SRPK1 and SRPK2, here we sought to obtain additional clues regarding the involvement of these paralogs in melanoma progression. We analyzed single-cell RNA sequencing data of melanoma patient cohorts and found that SRPK2 expression in melanoma cells is associated with poor prognosis. Consistently, CRISPR-Cas9 genome targeting of SRPK2, but not SRPK1, impaired actin polymerization dynamics as well as the proliferative and invasive capacity of B16F10 cells in vitro. In further in vivo experiments, genetic targeting of SRPK2, but not SRPK1, reduced tumor progression in both subcutaneous and caudal vein melanoma induction models. Taken together, these findings suggest different functional roles for SRPK1/2 in metastatic melanoma and highlight the relevance of pursuing selective pharmacological inhibitors of SRPK2.

7.
Front Integr Neurosci ; 15: 742377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153686

RESUMO

INTRODUCTION: The extracellular deposition of ß-amyloid (Aß) is a pathological hallmark in Alzheimer's disease (AD), which induces microglial activation in the pathology of AD. The expression of serine/threonine-protein kinase 2 (SRPK2) is increased in the brain tissues of patients with AD. In this study, we examined the effect of SRPK2 in the activation of microglia. METHODS: Microglia (BV2) cells were cultured and the expression of SRPK2 was enhanced by transfection of SRPK2 recombinant vectors or knockdown by SRPK2 small interfering RNA (siRNA). The cells were stimulated by lipopolysaccharide (LPS) + interferon-γ (IFN-γ) or Aß in vitro, generating inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-10, and IL-6], which were investigated by real-time quantitative PCR (qPCR) and ELISA. The proliferation ability of the BV2 cells with/without SRPK2 expression was evaluated by WST-1 under pressure in the presence of Aß. The effects of SRPK2 on microglia polarization were evaluated by investigating the expression of CD16/32 and CD206 by western blot and the expression of ionized calcium-binding adapter molecule-1 (IBA-1) and arginase-1 (Arg-1) by immunofluorescence. Hippocampal cells HT-22 were cultured with a BV2 cell (with/without SRPK2 expression)-derived medium stimulated by Aß or LPS + IFN-γ, prior to the evaluation of HT-22 cytotoxicity by assessment of cell viability. Possible relationships between Akt and SRPK2 in the BV2 cells were investigated by western blot. RESULTS: The expression of SRPK2 was related to the phenotype polarization changes of microglia with increased expression of CD16/32 and IBA-1. The expression of proinflammatory cytokines IL-6 and TNF-α was increased, whereas the expression of anti-inflammatory cytokine IL-10 was decreased in the BV2 cells with SRPK2 overexpression. Moreover, with the expression enhancement of SRPK2, the BV2 cells had a higher proliferation rate. Aß treatment can promote SRPK2 expression in BV2 cells. Aß or LPS + IFN-γ promoted the production of cytokines IL-6 and TNF-α but decreased cytokine IL-10 in the BV2 cells. SRPK2 deficiency alleviated the cytotoxic effects of Aß or LPS + IFN-γ exposed microglia on HT22 cells. In addition, the activated Akt pathway promoted the expression of SRPK2 in the BV2 cells. CONCLUSION: Our data have found that enhanced SRPK2 expression contributed to the proinflammatory activation of microglia. Thus, SRPK2 may be a key modulating pathway of inflammatory mediators in AD pathology.

8.
Cells ; 10(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808326

RESUMO

Serine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core and anchors the kinases in the cytoplasm is a unique structural feature of SRPKs. Here, we report that exposure of HeLa and T24 cells to DNA damage inducers triggers the nuclear translocation of SRPK1 and SRPK2. Furthermore, we show that nuclear SRPKs did not protect from, but on the contrary, mediated the cytotoxic effects of genotoxic agents, such as 5-fluorouracil (5-FU) and cisplatin. Confirming previous data showing that the kinase activity is essential for the entry of SRPKs into the nucleus, SRPIN340, a selective SRPK1/2 inhibitor, blocked the nuclear accumulation of the kinases, thus diminishing the cytotoxic effects of the drugs. ATR/ATM-dependent phosphorylation of threonine 326 and serine 408 in the spacer domain of SRPK1 was essential for the redistribution of the kinase to the nucleus. Substitution of either of these two residues to alanine or inhibition of ATR/ATM kinase activity abolished nuclear localization of SRPK1 and conferred tolerance to 5-FU treatment. These findings suggest that SRPKs may play an important role in linking cellular signaling to DNA damage in eukaryotic cells.


Assuntos
Núcleo Celular/metabolismo , Cisplatino/farmacologia , Fluoruracila/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dano ao DNA , Células HeLa , Humanos , Modelos Biológicos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Substâncias Protetoras/farmacologia , Transporte Proteico/efeitos dos fármacos
9.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31898732

RESUMO

Serine-arginine protein kinase 2 (SRPK2) is aberrantly expressed in human malignancies including colorectal cancer (CRC). However, little is known about the molecular mechanisms, and the role of SRPK2 in chemosensitivity remains unexplored in CRC. We recently showed that SRPK2 promotes pancreatic cancer progression by down-regulating Numb and p53. Therefore, we investigated the cooperation between SRPK2, Numb and p53 in the cell migration, invasion and chemosensitivity of CRC in vitro. Here, we showed that SRPK2 expression was higher in CRC tumors than in nontumor tissues. SRPK2 expression was positively associated with clinicopathological characteristics of CRC patients, including tumor differentiation, T stage, N stage and UICC stage. Additionally, SRPK2 had no association with mutant p53 (mtp53) in SW480 and SW620 cells, but negatively regulated Numb and wild-type p53 (wtp53) in response to 5-fluorouracil or cisplatin treatment in HCT116 cells. Moreover, SRPK2, Numb and p53 coimmunoprecipitated into a triple complex with or without the treatment of 5-fluorouracil in HCT116 cells, and p53 knockdown reversed the up-regulation of wtp53 induced by SRPK2 silencing with chemical agent treatment. Furthermore, overexpression of SRPK2 increased cell migration and invasion and decreased chemosensitivity to 5-fluorouracil or cisplatin in HCT116 cells. Conversely, SRPK2 silencing decreased cell migration and invasion and increased chemosensitivity to 5-fluorouracil or cisplatin, yet these effects could be reversed by p53 knockdown under chemical agent treatment. These results thus reveal a novel role of SRPK2-Numb-p53 signaling in the progression of CRC and demonstrate that SRPK2 is a potential therapeutic target for CRC clinical therapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Cisplatino/farmacologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Fluoruracila/farmacologia , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Cancer Rep (Hoboken) ; 3(2): e1224, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32671994

RESUMO

BACKGROUND: Serine-arginine protein kinase (SRPK) is a regulator of alternative splicing events via phosphorylation of splicing factor proteins. Oncogenic roles of SRPK1 and SRPK2 have been reported in various types of cancer. To date, only SRPK1/2 specific inhibitors and small interfering RNA (siRNA) have been used for halting their function momentarily; however, there is no attempt to generate SRPK1/2 stable knockout cancer cells as a tool to investigate their roles in tumorigenesis. AIM: Our objective is therefore to establish a nasopharyngeal carcinoma (NPC) cell line with stable SRPK1 or SRPK2 knockout and SRPK1/2 double knockout as a model to investigate their potential roles in NPC. METHODS AND RESULTS: CNE1 was selected as a representative of NPC cell lines to create single and double knockout of SRPK1/2 proteins. SRPK1/2 KO plasmid with cas9, green fluorescent protein (GFP), and gRNA expression was cotransfected with SRPK1/2 homology-directed repair (HDR) plasmid containing puromycin resistance, red fluorescent protein (RFP), and 5' and 3' arm sequence for homologous recombination to CNE1 cells. The transfected CNE1 cells with GFP and RFP expression were sorted through fluorescence-activated cell sorting for further treatment with puromycin containing medium. This step generated stable single knockout of SRPK1 and SRPK2. The SRPK2 knockout NPC cells were used as a precursor for double knockout generation via transfection with Cre plasmid for excision of inserted material to generate puromycin-sensitive SRPK2 knockout clone. The puromycin-sensitive SRPK2 knockout cells were transfected with SRPK1 KO/HDR plasmid and treated with puromycin-containing medium. The puromycin-resistant cells of SRPK1/2 stable double knockout were expanded, and the corresponding protein expression was confirmed by western immunoblotting analysis. CONCLUSION: Single and double knockout of SRPK1/2 were established using clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated 9 (Cas9) system in an NPC cell line as a model for investigation of their splicing mechanism in NPC.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Serina-Treonina Quinases/genética , Processamento Alternativo , Linhagem Celular Tumoral , Humanos , Proteínas Serina-Treonina Quinases/fisiologia
11.
FEBS J ; 286(9): 1668-1682, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724469

RESUMO

Serine/arginine protein-specific kinase 2 (SRPK2) plays a vital role in the progression of a range of different malignancies, including pancreatic cancer. However, the mechanisms are poorly understood. Previous studies have shown that in hepatocellular carcinoma, SRPK2 knockdown leads to the upregulation of the cell fate determining protein Numb, and in pancreatic cancer cells, Numb knockdown prevents ubiquitin-mediated degradation of p53. In this study, we investigated the relationship between SRPK2, Numb and p53 in the development of pancreatic cancer with or without chemical agent treatment in vitro. SRPK2 expression was upregulated in pancreatic cancer tissues and associated with decreased overall survival in pancreatic cancer patients, indicating that expression of this protein can be used as a marker of unfavourable prognosis. Expression of SRPK2 was positively associated with tumour T stage and Union for International Cancer Control (UICC) stage, and negatively associated with Numb expression in serial tissue sections. In pancreatic cancer cells, SRPK2 downregulation or overexpression led to modulation of Numb and wild-type p53 protein expression in response to oxaliplatin treatment. Furthermore, these three endogenous proteins could be coimmunoprecipitated as a triple complex. Numb or p53 knockdown reversed the upregulation of p53 that was induced by silencing SRPK2. SRPK2 overexpression promoted cell invasion and migration, and decreased chemosensitivity of cancer cells to gemcitabine or oxaliplatin treatment. Conversely, SRPK2 silencing decreased cell invasion and migration and increased chemosensitivity; these effects were reversed by silencing p53 in oxaliplatin-treated pancreatic cancer cells. Our data suggest that SRPK2 negatively regulates p53 by downregulating Numb under chemical agent treatment. Thus, SRPK2 promotes the development and progression of pancreatic cancer in a p53-dependent manner.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Neoplasias Pancreáticas/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/biossíntese , Idoso , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/secundário , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/genética , Oxaliplatina/farmacologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Gencitabina
12.
Biomed Pharmacother ; 102: 531-538, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29587239

RESUMO

Serine/Arginine-Rich Protein-Specific Kinase-2 (SRSF protein kinase-2, SRPK2) is up-regulated in multiple human tumors. However, the expression, function and clinical significance of SRPK2 in prostate cancer (PCa) has not yet been understood. We therefore aimed to determine the association of SRPK2 with tumor progression and metastasis in PCa patients in our present study. The expression of SRPK2 was detected by some public datasets and validated using a clinical tissue microarray (TMA) by immunohistochemistry. The association of SRPK2 expression with various clinicopathological characteristics of PCa patients was subsequently statistically analyzed based on the The Cancer Genome Atlas (TCGA) dataset and clinical TMA. The effects of SRPK2 on cancer cell proliferation, migration, invasion, cell cycle progression, apoptosis and tumor growth were then respectively investigated using in vitro and in vivo experiments. First, public datasets showed that SRPK2 expression was greater in PCa tissues when compared with non-cancerous tissues. Statistical analysis demonstrated that high expression of SRPK2 was significantly correlated with a higher Gleason Score, advanced pathological stage and the presence of tumor metastasis in the TCGA Dataset (all P < 0.01). Similar correlations between SRPK2 and a higher Gleason Score or advanced pathological stage were also identified in the TMA (P < 0.05). Kaplan-Meier curve analyses showed that the biochemical recurrence (BCR)-free time of PCa patients with SRPK2 high expression was shorter than for those with SRPK2 low expression (P < 0.05). Second, cell function experiments in PCa cell lines revealed that enhanced SRPK2 expression could promote cell proliferation, migration, invasion and cell cycle progression but suppress tumor cell apoptosis in vitro. Xenograft experiments showed that SRPK2 promoted tumor growth in vivo. In conclusion, our data demonstrated that SRPK2 may play an important role in the progression and metastasis of PCa, which suggests that it might be a potential therapeutic target for PCa clinical therapy.


Assuntos
Progressão da Doença , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Idoso , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Rep ; 18(2): 334-343, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076779

RESUMO

Genomic instability is frequently caused by nucleic acid structures termed R-loops that are formed during transcription. Despite their harmful potential, mechanisms that sense, signal, and suppress these structures remain elusive. Here, we report that oscillations in transcription dynamics are a major sensor of R-loops. We show that pausing of RNA polymerase II (RNA Pol II) initiates a signaling cascade whereby the serine/arginine protein kinase 2 (SRPK2) phosphorylates the DDX23 helicase, culminating in the suppression of R-loops. We show that in the absence of either SRPK2 or DDX23, accumulation of R-loops leads to massive genomic instability revealed by high levels of DNA double-strand breaks (DSBs). Importantly, we found DDX23 mutations in several cancers and detected homozygous deletions of the entire DDX23 locus in 10 (17%) adenoid cystic carcinoma (ACC) samples. Our results unravel molecular details of a link between transcription dynamics and RNA-mediated genomic instability that may play important roles in cancer development.


Assuntos
RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Transcrição Gênica , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Conformação de Ácido Nucleico , Fosforilação , Interferência de RNA , RNA Polimerase II/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo
14.
Gene ; 586(1): 41-7, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27041240

RESUMO

Colon cancer is one of the major causes of cancer-related death in the world. Understanding the molecular mechanism underlying this malignancy will facilitate the diagnosis and treatment. Serine-arginine protein kinase 2 (SRPK2) has been reported to be upregulated in several cancer types. However, its expression and functions in colon cancer remains unknown. In this study, it was found that the expression of SRPK2 was up-regulated in the clinical colon cancer samples. Overexpression of SRPK2 promoted the growth and migration of colon cancer cells, while knocking down the expression of SRPK2 inhibited the growth, migration and tumorigenecity of colon cancer cells. Molecular mechanism studies revealed that SRPK2 activated ERK signaling in colon cancer cells. Taken together, our study demonstrated the tumor promoting roles of SRPK2 in colon cancer cells and SRPK2 might be a promising therapeutic target for colon cancer.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Colo/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA