Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 168(7): 196, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386317

RESUMO

Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, ßC1, and ßV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.


Assuntos
Geminiviridae , Geminiviridae/genética , Células Vegetais , Imunidade Vegetal/genética , Virulência
2.
Viruses ; 14(10)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298638

RESUMO

Saccharolobus spindle-shaped virus 1 (SSV1) was one of the first viruses identified in the archaeal kingdom. Originally isolated from a Japanese species of Saccharolobus back in 1984, it has been extensively used as a model system for genomic, transcriptomic, and proteomic studies, as well as to unveil the molecular mechanisms governing the host-virus interaction. The purpose of this mini review is to supply a compendium of four decades of research on the SSV1 virus.


Assuntos
Fuselloviridae , Fuselloviridae/genética , Proteômica , Transcriptoma , Genômica , Archaea
3.
Front Plant Sci ; 13: 972386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212370

RESUMO

Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel ßV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. ßV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by ßV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that ßV1 protein localizes to the cellular periphery. ßV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that ßV1 functions as a protein elicitor and a pathogenicity determinant.

4.
Sci China Life Sci ; 63(5): 688-696, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32107688

RESUMO

Betasatellites (DNA ß) are circular ssDNA molecules that are associated with monopartite geminiviruses and exert a positive effect on the viral infection. Betasatellites encode one protein, named ßC1, on the complementary strand; ßC1 functions as a pathogenicity factor and RNA silencing suppressor. In this report, we describe the identification of another betasatellite-encoded protein, ßVl, which also contributes to symptom development. The ßVl open reading frame can be found on the viral strand of approximately 40% of reported betasatellite sequences, and is conserved in position and sequence. The presence of the ßVl transcript was observed in plants infected with Tomato yellow leaf curl China virus (TYTCCNV) along with its associated betasatellite Tomato yellow leaf curl China betasatellite (TYTCCNB). Mutant viruses unable to produce ßVl showed reduced virulence and decreased viral load. Ectopic expression of the TYTCCNB-PV1 gene in Nicotiana benthamiana plants from a PVX-based vector resulted in leaf mosaic and chlorosis. We further demonstrated that the ßVl protein could elicit hypersensitive response (HR)-type cell death in N. benthamiana leaves. Our results uncover a novel betasatellite-encoded protein that contributes to the virus infection, and this discover gives us a more complete view of the plant-geminivirus interaction landscape.


Assuntos
Begomovirus/genética , Nicotiana/genética , Doenças das Plantas/prevenção & controle , Proteínas Virais/genética , Viroses/genética , Regulação Viral da Expressão Gênica , Genes Supressores , Vetores Genéticos , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Proteínas Virais/metabolismo
5.
Virology ; 474: 105-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463608

RESUMO

The structure and assembly of many icosahedral and helical viruses are well-characterized. However, the molecular basis for the unique spindle-shaped morphology of many viruses that infect Archaea remains unknown. To understand the architecture and assembly of these viruses, the spindle-shaped virus SSV1 was examined using cryo-EM, providing the first 3D-structure of a spindle-shaped virus as well as insight into SSV1 biology, assembly and evolution. Furthermore, a geometric framework underlying the distinct spindle-shaped structure is proposed.


Assuntos
Fuselloviridae/ultraestrutura , Archaea/virologia , Simulação por Computador , Microscopia Crioeletrônica , Evolução Molecular , Fuselloviridae/genética , Fuselloviridae/fisiologia , Imageamento Tridimensional , Modelos Moleculares , Vírion/ultraestrutura , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA