Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 490(4): 1394-1398, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28698137

RESUMO

Metastasis remains the primary cause of prostate cancer related death. Cancer cells need to contact endothelial cells and disrupt endothelial junctions to cross the endothelium for invasion and metastasis. The suppression of heterotypic repulsion between cancer and endothelial cells allows cancer cells to invade into the surrounding tissue. Here, we demonstrate that SSeCKS/AKAP12 induced repulsion between human prostate cancer and microvessel endothelial cells, which was mediated by an angiogenesis inhibitor Semaphorin 3F. Moreover, we examined AKAP12 and Semaphorin 3F mRNA expression in 42 prostate cancer and 30 benign prostatic hyperplasia tissue samples, and found that the expression of AKAP12 and Semaphorin 3F mRNA was inversely associated with the degree of aggressiveness of prostate cancer cells and tissues. An ordinal logistic regression analysis indicates that there is a positive association between the expression of AKAP12 and Semaphorin 3F in prostate cancer, suggesting that the activation of Semaphorin 3F by SSeCKS/AKAP12 may be involved in prostate cancer progression and metastasis.


Assuntos
Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Hiperplasia Prostática/genética , RNA Mensageiro/genética , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Cocultura , Progressão da Doença , Células Endoteliais/citologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gradação de Tumores , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
2.
Oncotarget ; 9(71): 33515-33527, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323895

RESUMO

SSeCKS/Gravin/AKAP12 (SSeCKS) controls metastasis-associated PKC and Src signaling through direct scaffolding activity. SSeCKS is downregulated in the metastases of many human cancer types, and its forced re-expression suppresses the metastatic behavior of prostate cancer cells. SSeCKS is also downregulated in breast and prostate cancer stroma, and SSeCKS-null mice (KO) are metastasis-prone, suggesting a role in suppressing formation of the pre-metastatic niche. Here, we show that lung colonization and metastasis formation by B16F10 and SM1WT1[Braf V600E] mouse melanoma cells is 9-fold higher in syngeneic KO compared to WT hosts, although there is no difference in orthotopic tumor volumes. Although melanoma cells adhered equally to KO or WT lung fibroblasts (LF), co-injection of melanoma cells with KO (vs. WT) LF increased lung macrometastasis formation in WT hosts, marked by increased melanoma colonization at foci of leaky vasculature. Increased melanoma adhesion on KO lung endothelial cells (LEC) was facilitated by increased E-Selectin levels and by increased STAT3-regulated secretion of senescence-associated factors from KO-LF, such as Vegf. Finally, the ability of SSeCKS to attenuate IFNα-induced Stat3 activation in KO-LF required its Src-scaffolding domain. Taken together, these data suggest that SSeCKS normally suppresses metastatic colonization in the lung by attenuating the expression of Selectin adhesion proteins, which can be controlled autonomously by local endothelial cells or enhanced by senescence factors secreted by neighboring fibroblasts in a SSeCKS-regulated, Src/Stat3-dependent manner.

3.
Oncotarget ; 8(41): 70281-70298, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050279

RESUMO

SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein known to suppress metastasis by attenuating tumor-intrinsic PKC- and Src-mediated signaling pathways [1]. In addition to downregulation in metastatic cells, in silico analyses identified SSeCKS downregulation in prostate or breast cancer-derived stroma, suggesting a microenvironmental cell role in controlling malignancy. Although orthotopic B16F10 and SM1WT1[BrafV600E] mouse melanoma tumors grew similarly in syngeneic WT or SSeCKS-null (KO) mice, KO hosts exhibited 5- to 10-fold higher levels of peritoneal metastasis, and this enhancement could be adoptively transferred by pre-injecting naïve WT mice with peritoneal fluid (PF), but not non-adherent peritoneal cells (PC), from naïve KO mice. B16F10 and SM1WT1 cells showed increased chemotaxis to KO-PF compared to WT-PF, corresponding to increased PF levels of multiple inflammatory mediators, including the Cxcr3 ligands, Cxcl9 and 10. Cxcr3 knockdown abrogated enhanced chemotaxis to KO-PF and peritoneal metastasis in KO hosts. Conditioned media from KO peritoneal membrane fibroblasts (PMF), but not from KO-PC, induced increased B16F10 chemotaxis over controls, which could be blocked with Cxcl10 neutralizing antibody. KO-PMF exhibited increased levels of the senescence markers, SA-ß-galactosidase, p21waf1 and p16ink4a, and enhanced Cxcl10 secretion induced by inflammatory mediators, lipopolysaccharide, TNFα, IFNα and IFNγ. SSeCKS scaffolding-site mutants and small molecule kinase inhibitors were used to show that the loss of SSeCKS-regulated PKC, PKA and PI3K/Akt pathways are responsible for the enhanced Cxcl10 secretion. These data mark the first description of a role for stromal SSeCKS/AKAP12 in suppressing metastasis, specifically by attenuating signaling pathways that promote secretion of tumor chemoattractants in the peritoneum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA