Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pharmacol Res ; 201: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309381

RESUMO

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Depressão/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Plasticidade Neuronal
2.
Molecules ; 29(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39202826

RESUMO

Bupleurum is a kind of medicinal plant that has made a great contribution to human health because of the presence of bioactive metabolites: Bupleurum saikosaponins and flavonoids. Despite their importance, it has been a challenge to visually characterize the spatial distribution of these metabolites in situ within the plant tissue, which is essential for assessing the quality of Bupleurum. The development of a new technology to identify and evaluate the quality of medicinal plants is therefore necessary. Here, the spatial distribution and quality characteristics of metabolites of three Bupleurum species: Bupleurum smithii (BS), Bupleurum marginatum var. stenophyllum (BM), and Bupleurum chinense (BC) were characterized by Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Twenty-nine metabolites, including saikosaponins, non-saikosaponins, and compounds from the saikosaponin synthesis pathway, were characterized. Some of these were successfully localized and visualized in the transverse section of roots. In these Bupleurum species, twelve saikosaponins, five non-saikosaponins, and five saikosaponin synthesis pathway compounds were detected. Twenty-two major influencing components, which exhibit higher ion intensities in higher quality samples, were identified as potential quality markers of Bupleurum. The final outcome indicates that BC has superior quality compared to BS and BM. MALDI-MSI has effectively distinguished the quality of these Bupleurum species, providing an intuitive and effective marker for the quality control of medicinal plants.


Assuntos
Bupleurum , Raízes de Plantas , Saponinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bupleurum/química , Bupleurum/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Saponinas/metabolismo , Saponinas/análise , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Ácido Oleanólico/análise , Plantas Medicinais/metabolismo , Plantas Medicinais/química , Flavonoides/metabolismo , Flavonoides/análise
3.
Phytother Res ; 37(10): 4572-4586, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37318212

RESUMO

Radix Bupleuri exerts effective hepatoprotective and cholagogic effects through its Saikosaponins (SSs) component. Therefore, we attempted to determine the mechanism of saikosaponins used to promote bile excretion by studying their effects on intrahepatic bile flow, focusing on the synthesis, transport, excretion, and metabolism of bile acids. C57BL/6N mice were continuously gavaged with saikosaponin a (SSa), saikosaponin b2 (SSb2 ), or saikosaponin D (SSd) (200 mg/kg) for 14 days. Liver and serum biochemical indices were determined using Enzyme-linked immunosorbent assay (ELISA) kits. In addition, an ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) was used to measure the levels of the 16 bile acids in the liver, gallbladder, and cecal contents. Furthermore, SSs pharmacokinetics and docking between SSs and farnesoid X receptor (FXR)-related proteins were analyzed to investigate the underlying molecular mechanisms. Administration of SSs and Radix Bupleuri alcohol extract (ESS) did not cause significant changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), or alkaline phosphatase (ALP) levels. Saikosaponin-regulated changes in bile acid (BA) levels in the liver, gallbladder, and cecum were closely related to genes involved in BA synthesis, transport, and excretion in the liver. Pharmacokinetic studies indicated that SSs were characterized by rapid elimination (t1/2 as 0.68-2.47 h), absorption (Tmax as 0.47-0.78 h), and double peaks in the drug-time curves of SSa and SSb2 . A molecular docking study revealed that SSa, SSb2 , and SSd docked well with the 16 protein FXR molecules and target genes (<-5.2 kcal/mol). Collectively, saikosaponins may maintain BA homeostasis in mice by regulating FXR-related genes and transporters in the liver and intestine.

4.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570843

RESUMO

Saikosaponins (SS) are the main active components of Bupleuri Radix. In this study, the yields of SS a, b1, b2, c, d, e, and f were simultaneously determined using the HPLC-DAD dual wavelength method, and the ultrasound-assisted extraction process of saikosaponins was optimized using the response surface methodology. The antioxidant effect of saikosaponins was investigated using the scavenging rate of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2-diazo-bis (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl (-OH) groups, and the mechanism was clarified via network pharmacological analysis. The results showed that the optimal extraction process of SS was a 5% ammonia-methanol solution as an extraction solvent, a material-liquid ratio of 1:40, a temperature of 46.66 °C, an extraction time of 65.07 min, and an ultrasonic power of 345.56 W. The total content of the seven saikosaponins under this condition was up to 6.32%, which was close to the model's predicted value of 6.56%, where the yields of the seven saikosaponins a, b1, b2, c, d, e, and f were 1.18%, 0.11%, 0.26%, 1.02%, 3.02%, 0.38%, and 0.44%, respectively. The saikosaponins have an obvious scavenging ability for DPPH, ABTS, and -OH radicals. The interactions of seven saikosaponins with antioxidant targets were studied, and a database was used to collate the core of saikosaponins and antioxidants through network pharmacology. The mechanisms of the antioxidant effects of the saikosaponins were derived via GO enrichment analysis and KEGG pathway analysis. Finally, the binding energy of the saikosaponins to the antioxidant targets was found to be less than -5.0 kcal·mol-1 via molecular docking, indicating that the antioxidant capacity of the saikosaponins are good. Therefore, this study developed a rapid and efficient method for the extraction of saikosaponins, which provides a theoretical basis for an in-depth understanding of the rational utilization of saikosaponins and the development of their medicinal value.


Assuntos
Antioxidantes , Saponinas , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Saponinas/farmacologia , Saponinas/análise
5.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630731

RESUMO

The saponins of Bupleurum falcatum L., saikosaponins, are the major components responsible for its pharmacological and biological activities. However, the anti-cancer effects of prosaikogenin and saikogenin, which are glycoside hydrolyzed saikosaponins, are still unknown due to its rarity in plants. In this study, we applied two recombinant glycoside hydrolases that exhibit glycoside cleavage activity with saikosaponins. The two enzymes, BglPm and BglLk, were cloned from Paenibacillus mucilaginosus and Lactobacillus koreensis, and exhibited good activity between 30-37 °C and pH 6.5-7.0. Saikosaponin A and D were purified and obtained from the crude B. falcatum L. extract using preparative high performance liquid chromatography technique. Saikosaponin A and D were converted into saikogenin F via prosaikogenin F, and saikogenin G via prosaikogenin G using enzyme transformation with high ß-glycosidase activity. The two saikogenin and two prosaikogenin compounds were purified using a silica column to obtain 78.1, 62.4, 8.3, and 7.5 mg of prosaikogenin F, prosaikogenin G, saikogenin F, and saikogenin G, respectively, each with 98% purity. The anti-cancer effect of the six highly purified saikosaponins was investigated in the human colon cancer cell line HCT 116. The results suggested that saikosaponins and prosaikogenins markedly inhibit the growth of the cancer cell line. Thus, this enzymatic technology could significantly improve the production of saponin metabolites of B. falcatum L.


Assuntos
Sapogeninas , Saponinas , Humanos , Hidrólise , Ácido Oleanólico/análogos & derivados , Sapogeninas/química , Sapogeninas/farmacologia , Saponinas/química , Saponinas/farmacologia
6.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080237

RESUMO

Bupleurum chinense is an important medicinal plant in China; however, little is known regarding how this plant transcribes and synthesizes saikosaponins under drought stress. Herein, we investigated how drought stress stimulates the transcriptional changes of B. chinense to synthesize saikosaponins. Short-term drought stress induced the accumulation of saikosaponins, especially from the first re-watering stage (RD_1 stage) to the second re-watering stage (RD_2 stage). Saikosaponin-a and saikosaponin-d increased by 84.60% and 75.13%, respectively, from the RD_1 stage to the RD_2 stage. Drought stress also stimulated a rapid increase in the levels of the hormones abscisic acid, salicylic acid, and jasmonic acid. We screened 49 Unigenes regarding the terpenoid backbone and triterpenoid biosynthesis, of which 33 differential genes were significantly up-regulated during drought stress. Moreover, one P450 and two UGTs are possibly involved in the synthesis of saikosaponins, while some transcription factors may be involved in regulating the expression of key enzyme genes. Our study provides a reference for the cultivation of B. chinense and a practical means to ensure the quality (safety and effectiveness) of B. chinense for medicinal use, as well as insights into the modernization of the China Agriculture Research System.


Assuntos
Bupleurum , Ácido Oleanólico , Saponinas , Bupleurum/genética , Secas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Raízes de Plantas/genética , Saponinas/metabolismo , Terpenos/metabolismo
7.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956782

RESUMO

The quality of Radix Bupleuri is greatly affected by its growing environment. In this study, Radix Bupleuri samples that were harvested from seven different regions across northwest China were examined by high-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) to reveal significant differences in quality contributed by the cultivation region. An HPLC-MS method was firstly established and used in the multiple reaction monitoring mode for the quantitative analysis of five saikosaponins in Radix Bupleuri so as to evaluate the difference in the absolute content of saikosaponins attributable to the cultivation region. The effect on the components of Radix Bupleuri was further investigated based on the profiles of the representative saponins and volatile compounds, which were extracted from the Radix Bupleuri samples and analyzed by HPLC-MS and GC-MS. Multivariate statistical analysis was employed to differentiate the Radix Bupleuri samples cultivated in different regions and to discover the differential compositions. The developed quantitative method was validated to be accurate, stable, sensitive, and repeatable for the determination of five saikosaponins. Further statistical tests revealed that the collected Radix Bupleuri samples were distinctly different from each other in terms of both saponins and volatile compounds, based on the provinces where they were grown. In addition, twenty-eight saponins and fifty-eight volatile compounds were identified as the differentially accumulated compositions that contributed to the discrimination of the Radix Bupleuri samples. The Radix Bupleuri samples grown in Shouyang county showed the highest content of saikosaponins. All of the results indicated that the cultivation region significantly affected the accumulation and diversity of the main chemical components of Radix Bupleuri. The findings of this research provide insights into the effect of the cultivation region on the quality of Radix Bupleuri and the differentiation of Radix Bupleuri cultivated in different regions based on the use of HPLC-MS and GC-MS combined with multivariate statistical analysis.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Saponinas , Bupleurum/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Saponinas/análise
8.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33492566

RESUMO

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Domínios Proteicos , Saponinas/metabolismo , Saponinas/uso terapêutico
9.
Pharm Biol ; 59(1): 1480-1489, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714209

RESUMO

CONTEXT: Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE: To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS: We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS: The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS: SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bupleurum/química , Diferenciação Celular/efeitos dos fármacos , Humanos , Neoplasias/patologia , Ácido Oleanólico/efeitos adversos , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Saponinas/efeitos adversos , Saponinas/isolamento & purificação
10.
Xenobiotica ; 50(9): 1011-1022, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31858877

RESUMO

1. Bupleuri Radix (BR) is a herbal medicine traditionally used orally in oriental countries, which inevitably comes into contact with the intestinal microbiota. However, whether gut microbiota contribute to the biotransformation of BR, and/or the formation of pharmacologically active compounds remains unknown.2. In this study, the main saikosaponins (SAPs) of Bupleurum (including saikosaponin a, b1, b2, c, d, f, h) and BR extract (BRE) were individually incubated with human fecal suspensions (HFS), and metabolic time courses of SAPs and their metabolites by human gut bacteria were systematically characterized.3. Deglycosylation and dehydration were the main metabolic pathways identified for SAPs including newly investigated saikosaponin f (SSf) and saikosaponin h (SSh); dehydration had not been reported previously. A total of 19 dehydrated and deglycosylated metabolites of SAPs were detected and characterized, and 10 of them were newly identified. Moreover, SAPs of BRE were found to be deglycosylated to prosaikogenins. In addition, 13 metabolic pathways related to human gut microbiota were identified for phytochemicals of BRE except for SAPs. Gut microbiota may play a significant role in the biotransformation of BR in humans.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal , Biotransformação , Bupleurum , Humanos , Raízes de Plantas
11.
Plant Cell Rep ; 38(9): 1181-1197, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31165250

RESUMO

KEY MESSAGE: Drastic changes in soil water content can activate the short-term high expression of key enzyme-encoding genes involved in secondary metabolite synthesis thereby increasing the content of secondary metabolites. Bupleurum chinense DC. is a traditional medicinal herb that is famous for its abundant saikosaponins. In the current study, the effects of drought-re-watering-drought on the photosynthesis physiology and biosynthesis of saikosaponins were investigated in 1-year-old B. chinense. The results showed that alterations in soil moisture altered the photosynthesis physiological process of B. chinense. The dry weight and fresh weight of the roots, photosynthesis capacity, chlorophyll fluorescence parameters, and SOD, POD and CAT activities were significantly reduced, and the contents of SP, soluble sugars, PRO and MDA increased. There were strong correlations between different physiological stress indices. All indices promoted and restricted each other, responded to soil moisture changes synergistically, maintained plant homeostasis and guaranteed normal biological activities. It was found that RW and RD_1 were the key stages of the water-control experiment affecting the expression of saikosaponin-related genes. At these two stages, the expression of multiple genes was affected by changes in soil moisture, with their expression levels reaching several-fold higher than those at the previous stage. We noticed that the expression of saikosaponin synthesis genes (which were rapidly upregulated at the RW and RD_1 stages) did not coincide with the rapid accumulation of saikosaponins (at the RD-2 stage), which were found to correspond to each other at the later stages of the water-control experiment. This finding indicates that there is a time lag between gene expression and the final product synthesis. Rapid changes in the external environment (RW to RD_1) have a short-term promoting effect on gene expression. This study reveals that short-term stress regulation may be an effective way to improve the quality of medicinal materials.


Assuntos
Bupleurum/fisiologia , Ácido Oleanólico/análogos & derivados , Fotossíntese/fisiologia , Saponinas/biossíntese , Metabolismo Secundário , Água/fisiologia , Bupleurum/química , Secas , Ácido Oleanólico/biossíntese , Raízes de Plantas/química , Raízes de Plantas/fisiologia , Plantas Medicinais , Solo/química , Estresse Fisiológico
12.
J Asian Nat Prod Res ; 20(5): 399-411, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29726699

RESUMO

Over the past decades, a number of phytochemicals have been reported to possess potent pharmacological effects. Saikosaponins represent a group of oleanane derivatives, usually as glucosides, which are commonly found in medicinal plants Bupleurum spp., which have been used as traditional Chinese medicine for more than 1,000 years in China. Emerging evidence suggests that saikosaponins have many pharmacological effects, including sedation, anticonvulsant, antipyretic, antiviral, immunity, anti-inflammation, antitumor properties, protecting liver and kidney and so on. The present review provides a comprehensive summary and analysis of the pharmacological properties of saikosaponins, supporting the potential uses of saikosaponins as a medicinal agent.


Assuntos
Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Bupleurum/química , Medicamentos de Ervas Chinesas , Humanos , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Raízes de Plantas , Saponinas/química
13.
Bioorg Med Chem Lett ; 27(8): 1654-1659, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314599

RESUMO

This study to investigate antiviral components from the roots of Bupleurum marginatum var. stenophyllum led to the isolation of five novel saikosaponins, namely 6″-O-crotonyl-saikosaponin a (1), tibesaikosaponin I (2), tibesaikosaponin II (3), tibesaikosaponin III (4), tibesaikosaponin IV (5), along with 9 known analogues (6-14). Their structures were established by spectral data analyses (IR, MS, 1D and 2D NMR) and by comparison of spectral data with those of the related known compounds. Antiviral testing of all compounds against influenza A virus A/WSN/33 (H1N1) in 293TGluc cells showed that nepasaikosaponin k (12), saikosaponin n (13) and saikosaponin h (14) behaved more potent inhibitory activity and selectivity than the positive control, Ribavirin. The preliminary structure-activity relationship studies suggest that the 13, 28-epoxy group, the type of sugar chain and the type of olefinic bonds are significant for antiviral activity and selectivity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Bupleurum/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/química , Saponinas/farmacologia , Antivirais/isolamento & purificação , Linhagem Celular , Humanos , Influenza Humana/tratamento farmacológico , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Raízes de Plantas/química , Saponinas/isolamento & purificação , Relação Estrutura-Atividade
14.
Pharm Biol ; 55(1): 620-635, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27951737

RESUMO

CONTEXT: Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities. OBJECTIVE: To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri. METHODS: PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA). RESULTS AND CONCLUSION: 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b2, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.


Assuntos
Bupleurum/química , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Oleanólico/análogos & derivados , Saponinas/uso terapêutico , Animais , Antialérgicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Fatores Imunológicos/uso terapêutico , Neurotransmissores/uso terapêutico , Ácido Oleanólico/efeitos adversos , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/uso terapêutico , Fitoterapia , Plantas Medicinais , Saponinas/efeitos adversos , Saponinas/isolamento & purificação
15.
Bioorg Med Chem Lett ; 25(18): 3887-92, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26259802

RESUMO

As a part of our ongoing studies on cytotoxic triterpenoid saponins from herbal medicines, phytochemical investigation of the roots of Bupleurum chinense DC. afforded four new saikosaponins (1-4), along with 16 known ones (5-20). Their structures were established by direct interpretation of their spectral data, mainly HR-ESI-MS, 1D NMR and 2D NMR, and by comparison with literature data. Among them, compound 20 was isolated from the natural product for the first time. The cytotoxicities of all compounds against five selected human cancer cell lines (A549, HepG2, Hep3B, Bcap-37 and MCF-7) were assayed. In general, a number of the isolated compounds exhibited potent cytotoxic activities against the five selected human cancer cell lines. In particular, compounds 3, 8-9, 11-13, 16 and 20 showed more potent cytotoxic activities against the HepG2 and A549 cell lines than the positive control 5-fluorouracil. Based on the primary screening results, the preliminary structure-activity relationship (SAR) studies were also discussed. The SAR results suggest that the 13,28-epoxy bridge, the orientation of the hydroxyl group and the type of the sugar units are important requirements for cytotoxicity and selectivity.


Assuntos
Bupleurum/química , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Saponinas/química , Estereoisomerismo , Relação Estrutura-Atividade
16.
J Sep Sci ; 37(23): 3587-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223791

RESUMO

A separation method using counter current chromatography coupled with an evaporative light-scattering detection system was developed to purify five triterpenoid saponins from the roots of Bupleurum falcatum. The methanol extract was loaded onto a Diaion® HP20 column and fractionated by a methanol and water gradient elution. The saikosaponin-enriched fraction was obtained by elution with 100% methanol. The two-phase solvent systems used for separation were composed of chloroform/methanol/isopropanol/water at a volume ratio of 60:60:1:60 and 6:6:1:6. The relationship between the isopropanol ratio of each phase and the partition coefficients of the target compounds was investigated by calculating partition coefficient by high-performance liquid chromatography and measuring the accurate composition of each phase by (1) H NMR spectroscopy. Each fraction obtained was collected and dried, which yielded the following five saikosaponins from 700 mg of injected sample: saikosaponin B1 (8.7 mg), saikosaponin A (86 mg), saikosaponin B3 (17 mg), saikosaponin B2 (41 mg), and saikosaponin C (33 mg). Saikosaponin A showed the most potent cytotoxicity against human cancer cells (gastric cancer, AGS cells; breast cancer, MCF-7 cells; and hepatoma, HepG2 cells) after 24 h. The IC50 values for the above three cell types were 34.6, 33.3, and 23.4 µmol/L, respectively.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Bupleurum/química , Distribuição Contracorrente/métodos , Medicamentos de Ervas Chinesas/isolamento & purificação , Triterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Distribuição Contracorrente/instrumentação , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Células MCF-7 , Raízes de Plantas/química , Triterpenos/química , Triterpenos/farmacologia
17.
Xenobiotica ; 44(10): 861-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24779639

RESUMO

1. In this article, the modulatory effects of extracts from vinegar-baked Radix Bupleuri (VBRB) and saikosaponins on the activity of CYP1A2, CYP2C9 and CYP3A4 were investigated in vitro. 2. Microsomal in vitro incubation method was utilized to simulate metabolic reaction under physiological environment by incubating the marker with liver microsomes in the absence or presence of VBRB and saikosaponins. The contents of 4-acetamidophenol, 6ß-hydroxyltestosterone and 4-hydroxydiclofenac, the metabolites of phenacetin, testosterone and diclofenac, which were selected as specific probe drugs of CYP1A2, CYP2C9 and CYP3A4, respectively, were analyzed by high-performance liquid chromatography. 3. The production of the metabolites was incubation time dependent. The modulatory effects of different VBRB extracts and saikosaponins on CYP isoforms increased with concentration. Among all the extracts studied, BC1 has a strong inhibition effect compared to the three CYP isoforms tested, while the others have only significant inhibition on the activity of CYP2C9. 4. This in vitro study demonstrated that various extracts of VBRB tested in this study have negligible potential to interfere with CYP1A2- and CYP3A4-metabolized drugs; risk of herb-drug interaction might occur when VBRB is concurrently taken with CYP2C9 substrates.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Ácido Acético/química , Animais , Bupleurum/química , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Isoenzimas/metabolismo , Masculino , Camundongos , Microssomos Hepáticos , Ácido Oleanólico/farmacologia , Extratos Vegetais/química , Fatores de Tempo
18.
Xenobiotica ; 44(9): 785-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24641105

RESUMO

In Traditional Chinese Medicine, liver targeting is usually achieved by coadministration with Vinegar-baked Radix Bupleuri (VBRB), but the mechanism is unclear. In this paper, the influence of VBRB on the activity of ß-glucuronidase was investigated and compared with that of saikosaponins. The activity of ß-glucuronidase was measured by microplate reader using a 4-nitrophenyl-ß-d-glucuronide substrate. The change of 4-nitrophenol content was used to characterize the activity of ß-glucuronidase. Bupleurum chinenes were found to be the inhibitor of ß-glucuronidase. The inhibition rate of Bupleurum chinenes extracts BC1 (high molecular weight polysaccharides), BC2 (ethanol soluble/water insoluble component), BC3 (extracted by n-butanol, soluble in water), and BC4 (low molecular weight water soluble parts) on the activity of ß-glucuronidase was found to be 45.15%, 33.94%, 24.94%, and 34.54%, respectively, after 1 h incubation, with BC1 showing the highest inhibition rate. In contrast, the saikosaponins were demonstrated to be the promoter of ß-glucuronidase, with promotion rates of 333.56%, 217.04%, 247.87%, 149.75%, and 92.50% for saikosaponin standard samples A, B, B2, C, and D, respectively, (p<0.05). In conclusion, inhibiting the activity of ß-glucuronidase might be one of the reasons why VBRB could influence drug distribution upon its coadministration with other drugs. Since saikosaponins and VBRB extracts have opposite effect, more attention should be paid to the content of saikosaponins in the extracts upon its application.


Assuntos
Ácido Acético/química , Bupleurum/química , Medicamentos de Ervas Chinesas/farmacologia , Glucuronidase/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , 1-Butanol/metabolismo , Glucuronatos/metabolismo , Glucuronidase/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nitrofenóis/metabolismo , Ácido Oleanólico/farmacologia
19.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726730

RESUMO

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Assuntos
Bupleurum , Ácido Oleanólico , Raízes de Plantas , Saponinas , Sorghum , Zea mays , Agricultura/métodos , Bupleurum/química , Bupleurum/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massa com Cromatografia Líquida , Metabolômica/métodos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Ácido Oleanólico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Saponinas/análise , Saponinas/metabolismo , Sorghum/metabolismo , Sorghum/química , Zea mays/metabolismo , Zea mays/química
20.
Biomolecules ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38672468

RESUMO

So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.


Assuntos
Anti-Inflamatórios , Sulfato de Dextrana , Lipopolissacarídeos , Macrófagos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/patologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Masculino , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA