RESUMO
Estrus or sexual receptivity determination is utmost important for efficient breeding programs for female buffaloes. Prominent estrus behavioral symptoms are the result of several molecular and neuroendocrine events involving the ovary and the brain. Expression of estrus behavior is poor in buffaloes during the summer season. Hence, the discovery of biomarkers specific to the estrus stage or its related ovarian events, like the presence of dominant ovarian follicle, is helpful for developing an easy estrus determination method. MicroRNA are small non-coding RNA with a potential to be biomarkers. Therefore, the present study targeted to investigate the potential of estrogen responsive miRNAs (miR-24, miR-200c, miR-16, miR-191, miR-223 and miR-203) as estrus biomarkers in buffalo saliva, a non-invasive fluid representing animals' pathophysiology. There was a significant (P < 0.05) increase in the salivary presence of the miR-16, miR-191 and miR-223 at 6th and 18th-19th days than the 0 day (estrus), 10th day and the following consecutive estrus day. These observations may indicate an association between the representative lower presence of these miRNA in saliva and the presence of dominant ovarian follicles. To test this association, pathway analysis, target gene identification, functional annotation and protein-protein interaction networks (PPI) were performed for miR-16, miR-191 and miR-223 by different bioinformatics tools. Interestingly, the top pathways (fatty acid biosynthesis and oocyte meiosis), target genes (FGF, BDNF and IGF1) and PPI hub genes (KRAS, BCL2 and IGF1) of these miRNAs were found essential for ovarian follicular dominance. In conclusion, the miR-16, miR-191 and miR-223 may not be the perfect estrus stage-specific biomarkers. However, their lower presence in saliva at estrus and 9th-10th day of estrous cycles, when the ovary usually has a dominant follicle in buffaloes, may intuitively indicate the follicular dominance. Further studies are needed to prove this association in a large population.
Assuntos
Búfalos/fisiologia , Estro/fisiologia , MicroRNAs/análise , Folículo Ovariano/fisiologia , Saliva/química , Animais , Sequência de Bases , Biomarcadores/análise , Biomarcadores/metabolismo , Estrogênios/metabolismo , Estro/genética , Detecção do Estro/métodos , Feminino , MicroRNAs/metabolismo , Comportamento Sexual Animal/fisiologiaRESUMO
The traditional Korean diet (K-diet) is considered to be healthy and circulating microRNAs (miRs) have been proposed as useful markers or targets in diet therapy. We, therefore, investigated the metabolic influence of the K-diet by evaluating the expression of plasma and salivary miRs. Ten women aged 50 to 60 years were divided into either a K-diet or control diet (a Westernized Korean diet) group. Subjects were housed in a metabolic unit-like condition during the two-week dietary intervention. Blood and saliva samples were collected before and after the intervention, and changes in circulating miRs were screened by an miR array and validated by individual RT-qPCRs. In the K-diet group, eight plasma miRs were down-regulated by array (p < 0.05), out of which two miRs linked to diabetes mellitus, hsa-miR26a-5p and hsa-miR126-3p, were validated (p < 0.05). Among five down-regulated salivary miRs, hsa-miR-92-3p and hsa-miR-122a-5p were validated, which are associated with diabetes mellitus, acute coronary syndrome and non-alcoholic fatty liver disease. In the control diet group, validated were down-regulated plasma hsa-miR-25-3p and salivary hsa-miR-31-5p, which are associated with diabetes mellitus, adipogenesis and obesity. The K-diet may influence the metabolic conditions associated with diabetes mellitus, as evidenced by changes in circulating miRs, putative biomarkers for K-diet.
Assuntos
MicroRNA Circulante/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/dietoterapia , Dieta/métodos , Biomarcadores/sangue , Feminino , Humanos , Projetos Piloto , República da CoreiaRESUMO
Aim: Salivary miRNA can be easily accessible biomarkers of alcohol dependence (AD). Materials & methods: The miRNA transcriptome in the saliva of 56 African-Americans (AAs; 28 AD patients/28 controls) and 64 European-Americans (EAs; 32 AD patients/32 controls) was profiled using small RNA sequencing. Differentially expressed miRNAs were identified. Salivary miRNAs were used to predict the AD presence using machine learning with Random Forests. Results: Seven miRNAs were differentially expressed in AA AD patients, and five miRNAs were differentially expressed in EA AD patients. The AD prediction accuracy based on top five miRNAs (ranked by Gini index) was 79.1 and 72.2% in AAs and EAs, respectively. Conclusion: This study provided the first evidence that salivary miRNAs are AD biomarkers.
Assuntos
Alcoolismo/diagnóstico , Biomarcadores/metabolismo , Aprendizado de Máquina , MicroRNAs/metabolismo , Saliva/metabolismo , Adulto , Negro ou Afro-Americano , Alcoolismo/etnologia , Alcoolismo/genética , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , População BrancaRESUMO
MicroRNAs (miRNAs) play a central role in the regulation of many cellular processes including physiological and psychological stress reaction pathways. Psychological stress is an important factor for the genesis and maintenance of many diseases. Several miRNAs have already been described to be involved in its regulation. The presence of miRNAs in all body fluids implies a widespread role in communication throughout the whole organism and together with their stability makes them formidable candidates as biomarkers. Alterations of stress-associated miRNA expression levels have been found in the brain and whole blood of humans and animals. In this paper, we review the participation of miRNAs in stress-reactive processes as well as their usability as salivary biomarkers of such processes. In conclusion, we suggest that salivary miRNAs may be useful as noninvasive biomarkers to assess epigenetic regulation processes of chronic or acute psychological stress reactions.