Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Pathol ; 57(5): 687-699, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744164

RESUMO

Epizootic epitheliotropic disease virus (salmonid herpesvirus-3; EEDV) is responsible for the death of millions of hatchery-raised lake trout (Salvelinus namaycush) in the Laurentian Great Lakes Basin. However, little is known about its biology, pathology, tropism, and host interactions. In this study, the presence and disease progression of EEDV were evaluated following exposure of naïve juvenile lake trout to EEDV via bath immersion under controlled laboratory conditions (n = 84 infected; n = 44 control). Individual tissues (n = 10 per fish), collected over 6 weeks, were analyzed for viral load by quantitative polymerase chain reaction, gross and histopathologic changes, and virus cellular targets using in situ hybridization. Skin, fin, and ocular tissues were the earliest viral targets and yielded the highest viral loads throughout the course of infection. Early gross lesions included exophthalmia, ocular hemorrhage, fin congestion, and hyperemia of visceral blood vessels. Advanced disease was characterized by multifocal to coalescing erosions and ulcerations of the skin, and congestion of visceral organs. Microscopically, there was cellular degeneration and necrosis in the epidermis and spleen, and lymphohistiocytic perivasculitis of the dermis, omentum, and the epicardium. EEDV DNA was first detected by in situ hybridization in epithelial cells of the epidermis, with subsequent labeling in the epithelial lining of primary and secondary gill lamellae. During advanced disease, EEDV was detected in endothelial and dendritic cells as well as blood monocytes. This study characterized EEDV tissue tropism and associated pathologic features, to guide research aimed at understanding EEDV disease ecology and improving strategies for disease control.


Assuntos
Doenças dos Peixes/patologia , Infecções por Herpesviridae/veterinária , Truta/virologia , Varicellovirus/fisiologia , Animais , Progressão da Doença , Doenças dos Peixes/virologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia
2.
Pathogens ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207532

RESUMO

Epizootic epitheliotropic disease virus (EEDV) has caused considerable mortality in hatchery-reared lake trout Salvelinus namaycush in the Great Lakes Basin, and yet the routes of transmission and efficacious means of prevention remain poorly understood. To determine whether EEDV can be transmitted via contaminated fomites and clarify whether such transmission could be prevented via fomite disinfection, juvenile lake trout (n = 20 per treatment) were handled in nets previously soaked in an EEDV suspension (7.29 × 104-2.25 × 105 virus copies/mL of water) that were further immersed in either 1% Virkon® Aquatic ("disinfected" treatment, in triplicate) or in sample diluent ("EEDV-contaminated" treatment). Negative control nets were soaked in sterile sample diluent only. Characteristic gross signs of EED developed in the "EEDV-contaminated" treatment group, which was followed by 80% mortality, whereas no gross signs of disease and 0-5% mortality occurred in the negative control and "disinfected" treatment groups, respectively. EEDV was detected via qPCR in 90% of the "EEDV-contaminated" treatment fish, however, it was not detected in any fish within the negative control or "disinfected" treatment groups. Study findings not only demonstrate that EEDV can be readily transmitted via contaminated fomites, but importantly suggest that Virkon® Aquatic is an efficacious option for preventing EEDV contagion via the disinfection of hatchery tools, thereby highlighting a promising tool for improving lake trout hatchery biosecurity and minimizing EEDV-linked losses.

3.
Viruses ; 11(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247927

RESUMO

Salmonid Herpesvirus-3, commonly known as the Epizootic Epitheliotropic Disease virus (EEDV), causes a disease of lake trout (Salvelinus namaycush) that has killed millions of fish over the past several decades. Currently, most aspects of EEDV disease ecology remain unknown. In this study, we investigated EEDV shedding in experimentally challenged (intracoelomic injection) lake trout that were individually microchipped. In order to assess viral shedding, each infected fish was placed in individual static, aerated aquaria for a period of 8 h, after which the water was assessed for the presence of EEDV DNA using quantitative PCR. Water sampling was conducted every seven days for 93 days post-infection (pi), followed by additional sampling after one year. Results demonstrated that lake trout began shedding EEDV into the water as early as 9 days pi. Shedding peaked approximately three weeks pi and ceased after nine weeks pi. In contrast, mortalities did not occur until 40 days pi. Although mortality reached 73.9%, surviving fish ceased shedding and continued to grow. However, additional shedding was detected 58 weeks after infection in 66% of surviving fish. Findings of this study demonstrate that EEDV is shed into the water by infected lake trout hosts for extended periods of time, a mechanism that favors virus dissemination.


Assuntos
Doenças dos Peixes/virologia , Truta/virologia , Viroses/veterinária , Eliminação de Partículas Virais , Vírus/isolamento & purificação , Animais , Viroses/virologia , Fenômenos Fisiológicos Virais , Vírus/classificação , Vírus/genética
4.
J Virol Methods ; 264: 44-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444983

RESUMO

Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus-3) causes a serious disease hatchery-reared lake trout (Salvelinus namaycush), threatening restoration efforts of this species in North America. The current inability to replicate EEDV in vitro necessitates the search for a reproducible, sensitive, and specific assay that allows for its detection and quantitation in a time- and cost-effective manner. Herein, we describe a loop-mediated isothermal amplification (LAMP) assay that was developed for the quantitative detection of EEDV in infected fish tissues. The newly developed LAMP reaction was optimized in the presence of calcein, and the best results were produced using 2 mM MgCl2, 1.8 mM dNTPs and at an incubation temperature of 67.1 °C. This method was highly specific to EEDV, as it showed no cross-reactivity with several fish viruses, including Salmonid Herpesvirus-1, -2, -4, and -5, Infectious Pancreatic Necrosis Virus, Spring Viremia of Carp Virus, Infectious Hematopoietic Necrosis Virus, Golden Shiner Reovirus, Fathead Minnow Nidovirus, and Viral Hemorrhagic Septicemia Virus. The analytical sensitivity of the EEDV-LAMP method was estimated to be as low as 16 copies of plasmid per reaction. When infected fish tissue was used, a positive reaction could be obtained when an infected gill tissue sample that contained 430 viral copies/µg was diluted up to five orders of magnitude. The sensitivity and specificity of the newly developed LAMP assay compared to the SYBR Green qPCR assay were 84.3% and 93.3%, respectively. The quantitative LAMP for EEDV had a correlation coefficient (R2 = 0.980), and did not differ significantly from the SYBR Green quantitative PCR assay (p > 0.05). Given its cost- and time-effectiveness, this quantitative LAMP assay is suitable for screening lake trout populations and for the initial diagnosis of clinical cases.


Assuntos
Doenças dos Peixes/diagnóstico , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Truta/virologia , Animais , DNA Viral/genética , Doenças dos Peixes/virologia , Brânquias/virologia , Herpesviridae/genética , Infecções por Herpesviridae/diagnóstico , Sensibilidade e Especificidade , Pele/virologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA