Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 17: 791-806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936522

RESUMO

Purpose: Our aims were to investigate the pathogenesis of diabetic cardiomyopathy (DCM) and to explore the protective effect of glucagon-like peptide-1 receptor agonist (GLP-1RA) on DCM. Methods: After 12 weeks of treatment with exenatide-loaded microspheres, a long-acting GLP-1RA, in DCM mice, cardiac structure and function were evaluated by plasma B-type natriuretic peptide (BNP), echocardiography, H&E, oil red and Sirius staining. The expression of glucagon-like peptide-1 receptor in mouse heart tissue was determined by immunofluorescence staining. The label-free proteomic analysis of cardiac proteins was conducted among control, DCM and DM+GLP-1RA groups. Then, quantitative real-time PCR, Western blotting and dual-luciferase reporter assay were performed to verify the regulation of target protein by the upstream microRNA (miRNA). Results: GLP-1RA treatment obviously improved serum BNP, myocardial fibrosis, lipid deposition of the myocardium and echocardiography parameters in DCM mice. Sarcolemmal membrane-associated protein (SLMAP) was one of 61 differentially expressed cardiac proteins found in three groups by proteomic analysis. Up-regulation of microRNA-29b-3p (miR-29b-3p) and down-regulation of SLMAP were found in the ventricular myocardium of GLP-1RA-treated DCM mice. SLMAP was a target of miR-29b-3p, while GLP-1RA regulated SLMAP expression through miR-29b-3p. Furthermore, inhibition of glucagon-like peptide-1 receptor (GLP-1R) in cardiomyocytes reversed the effects of GLP-1RA on miR-29b/SLMAP. Conclusion: SLMAP may play roles in the pathogenesis of DCM and may be a target of GLP-1RA in protecting against DCM. After binding to myocardial GLP-1R, GLP-1RA can regulate the expression of myocardial SLMAP through miR-29b-3p.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Receptor do Peptídeo Semelhante ao Glucagon 1 , Proteínas de Membrana , MicroRNAs , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteômica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Diabetes Metab Syndr ; 16(11): 102653, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36308782

RESUMO

BACKGROUND AND AIMS: Diabetic retinopathy (DR) is one of the most common microvascular diabetic complications. Sarcolemmal membrane-associated protein (SLMAP) has been implicated in playing a role in microvascular endothelial dysfunction. This study aimed to assess the significance of SLMAP rs17058639C > T gene polymorphism among patients with type 2 diabetes mellitus (T2DM) and its relevance to microvascular endothelial diabetic retinopathy. METHODS: We conducted this case-control study on 100 individuals divided into 60 participants with T2DM and 40 healthy controls. Patients with T2D were stratified into two groups: 40 patients with DR and 20 patients with diabetic non-retinopathy (DNR). Patients with T2DM were compared with age- and sex-matched healthy controls. Fundus examinations were conducted to detect microvascular endothelial changes. The polymorphism of SLMAP rs17058639C > T gene was identified by real-time polymerase chain reaction (RT-PCR) TaqMan allelic discrimination. RESULTS: Patients with DR have significantly increased glycated hemoglobin (HbA1c) compared to patients with DNR (P < 0.001). There was no statistically significant difference found between diabetic and control groups regarding the frequency of SLMAP rs17058639C > T genotypes. The homozygous CC genotype was the most common variant among patients with DR; however, the results did not reach statistical significance. CONCLUSIONS: Diabetic retinopathy is correlated with poor glycemic control, and SLMAP rs17058639C > T polymorphism was associated with microvascular endothelial DR in patients with T2DM, although further studies with a large sample size are needed to confirm our findings.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Genótipo , Proteínas de Membrana/genética , Frequência do Gene
3.
Int J Biochem Cell Biol ; 47: 118-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333164

RESUMO

The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a Calmodulina/genética , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA