Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612074

RESUMO

In this study, concurrent enhancements in both strength and ductility of the Al-2Li-2Cu-0.5Mg-0.2Zr cast alloy (hereafter referred to as Al-Li) were achieved through an optimized forming process comprising ultrasonic treatment followed by squeeze casting, coupled with the incorporation of Sc. Initially, the variations in the microstructure and mechanical properties of the Sc-free Al-Li cast alloy (i.e., alloy A) during various forming processes were investigated. The results revealed that the grain size in the UT+SC (ultrasonic treatment + squeeze casting) alloy was reduced by 76.3% and 57.7%, respectively, compared to those of the GC (gravity casting) or SC alloys. Additionally, significant improvements were observed in its compositional segregation and porosity reduction. After UT+SC, the ultimate tensile strength (UTS), yield strength (YS), and elongation reached 235 MPa, 135 MPa, and 15%, respectively, which were 113.6%, 28.6%, and 1150% higher than those of the GC alloy. Subsequently, the Al-Li cast alloy containing 0.2 wt.% Sc (referred to as alloy B) exhibited even finer grains under the UT+SC process, resulting in simultaneous enhancements in its UTS, YS, and elongation. Interestingly, the product of ultimate tensile strength and elongation (i.e., UTS × EL) for both alloys reached 36 GPa•% and 42 GPa•%, respectively, which is much higher than that of other Al-Li cast alloys reported in the available literature.

2.
Materials (Basel) ; 17(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38591473

RESUMO

Thin twin-roll cast strips from a model Al-Cu-Mg-Li-Zr alloy with a small addition of Sc were prepared. A combination of a fast solidification rate and a favorable effect of Sc microalloying refines the grain size and the size of primary phase particles and reduces eutectic cell dimensions to 10-15 µm. Long-term homogenization annealings used in conventionally cast materials lasting several tens of hours followed by a necessary dimension reduction through rolling/extruding could be substituted by energy and material-saving procedure. It consists of two-step short annealings at 300 °C/30 min and 450 °C/30 min, followed by the refinement and hardening of the structure using constrained groove pressing. A dense dispersion of 10-20 nm spherical Al3(Sc,Zr) precipitates intensively forms during this treatment and effectively stabilizes the structure and inhibits the grain growth during subsequent solution treatment at 530 °C/30 min. Small (3%) pre-straining after quenching assures more uniform precipitation of strengthening Al2Cu (θ'), Al2CuMg (S'), and Al2CuLi (T1) particles during subsequent age-hardening annealing at 180 °C/14 h. The material does not contain a directional and anisotropic structure unavoidable in rolled or extruded sheets. The proposed procedure thus represents a model near net shape processing strategy for manufacturing lightweight high-strength sheets for cryogenic applications in aeronautics.

3.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068119

RESUMO

The present study was performed on three versions of 7075 alloy to which Sc or Sc + Li was added. The alloys were subjected to various aging treatments. The microhardness results show that the highest value of hardness was achieved when the alloy containing Li + Sc was aged at 120 °C for 24 h whereas the minimum level was exhibited by the base alloy aged at 280 °C. The results were interpreted in terms of the size and distribution of the main hardening phase (η'(MgZn2)), and the role of the presence of Al and Cu in the used alloy. Precipitation of Al3(Sc, Zr, Ti) phase particles during solidification of the Sc-containing ingots was also discussed. The coarsening and spheroidi-zation of η-phase particles take place through the Ostwald ripening mechanism while smaller par-ticles in solution dissolve and deposit on larger particles. In Sc-containing alloys, star phase particle consists of different layers. The change in the brightness from layer to layer indicates that the Zr and Sc concentrations are varied within the star phase, since the atomic number of Zr (40) is higher than the atomic number of Sc (21). The addition of Sc, as well, leads to marked decrease in the grain size of the as-cast alloys i.e., 300 µm and 45 µm, respectively. The interaction between Li and Sc would reduce the effectiveness of the grain refining effect of Sc. The results of the refining effect of Sc were confirmed using the EBSD technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA