Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Biotechnol Bioeng ; 121(4): 1244-1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192095

RESUMO

During the scale-up of biopharmaceutical production processes, insufficiently predictable performance losses may occur alongside gradients and heterogeneities. To overcome such performance losses, tools are required to explain, predict, and ultimately prohibit inconsistencies between laboratory and commercial scale. In this work, we performed CHO fed-batch cultivations in the single multicompartment bioreactor (SMCB), a new scale-down reactor system that offers new access to study large-scale heterogeneities in mammalian cell cultures. At volumetric power inputs of 20.4-1.5 W m-3, large-scale characteristics like long mixing times and dissolved oxygen (DO) heterogeneities were mimicked in the SMCB. Compared to a reference bioreactor (REFB) set-up, the conditions in the SMCB provoked an increase in lactate accumulation of up to 87%, an increased glucose uptake, and reduced viable cell concentrations in the stationary phase. All are characteristic for large-scale performance. The unique possibility to distinguish between the effects of changing power inputs and observed heterogeneities provided new insights into the potential reasons for altered product quality attributes. Apparently, the degree of galactosylation in the evaluated glycan patterns changed primarily due to the different power inputs rather than the provoked heterogeneities. The SMCB system could serve as a potent tool to provide new insights into scale-up behavior and to predict cell line-specific drawbacks at an early stage of process development.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Cricetinae , Linhagem Celular , Células CHO , Cricetulus , Oxigênio
2.
Biotechnol Bioeng ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993032

RESUMO

Scale-down models (SDM) are pivotal tools for process understanding and improvement to accelerate the development of vaccines from laboratory research to global commercialization. In this study, a 3 L SDM representing a 50 L scale Vero cell culture process of a live-attenuated virus vaccine using microcarriers was developed and qualified based on the constant impeller power per volume principle. Both multivariate data analysis (MVDA) and the traditional univariate data analysis showed comparable and equivalent cell growth, metabolic activity, and product quality results across scales. Computational fluid dynamics simulation further confirmed similar hydrodynamic stress between the two scales.

3.
Microb Cell Fact ; 23(1): 44, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336674

RESUMO

BACKGROUND: Microorganisms must respond to changes in their environment. Analysing the robustness of functions (i.e. performance stability) to such dynamic perturbations is of great interest in both laboratory and industrial settings. Recently, a quantification method capable of assessing the robustness of various functions, such as specific growth rate or product yield, across different conditions, time frames, and populations has been developed for microorganisms grown in a 96-well plate. In micro-titer-plates, environmental change is slow and undefined. Dynamic microfluidic single-cell cultivation (dMSCC) enables the precise maintenance and manipulation of microenvironments, while tracking single cells over time using live-cell imaging. Here, we combined dMSCC and a robustness quantification method to a pipeline for assessing performance stability to changes occurring within seconds or minutes. RESULTS: Saccharomyces cerevisiae CEN.PK113-7D, harbouring a biosensor for intracellular ATP levels, was exposed to glucose feast-starvation cycles, with each condition lasting from 1.5 to 48 min over a 20 h period. A semi-automated image and data analysis pipeline was developed and applied to assess the performance and robustness of various functions at population, subpopulation, and single-cell resolution. We observed a decrease in specific growth rate but an increase in intracellular ATP levels with longer oscillation intervals. Cells subjected to 48 min oscillations exhibited the highest average ATP content, but the lowest stability over time and the highest heterogeneity within the population. CONCLUSION: The proposed pipeline enabled the investigation of function stability in dynamic environments, both over time and within populations. The strategy allows for parallelisation and automation, and is easily adaptable to new organisms, biosensors, cultivation conditions, and oscillation frequencies. Insights on the microbial response to changing environments will guide strain development and bioprocess optimisation.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Trifosfato de Adenosina
4.
Biotechnol Lett ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066960

RESUMO

PURPOSE: Perfusion cultures have been extensively used in the biotechnology industry to achieve high yields of recombinant products, especially those with stability issue. The WuXiUP™ platform represents a novel intensified perfusion that can achieve ultra-high productivity. This study describes a representative scale-down 24-deep well plate (24-DWP) cell culture model for intensified perfusion clone screening. METHODS: Clonal cell lines were expanded and evaluated in 24-DWP semi-continuous culture. Cell were sampled and counted daily with the aid of an automated liquid handler and high-throughput cell counter. To mimic perfusion culture, 24-DWP plates were spun down and resuspended with fresh medium daily. Top clones were ranked based on growth profiles and productivities. The best performing clones were evaluated on bioreactors. RESULTS: The selected clones achieved volumetric productivity (Pv) up to 5 g/L/day when expressing a monoclonal antibody, with the accumulative harvest Pv exceeding 60 g/L in a 21-day cell culture. Product quality attributes of clones cultured in 24-DWP were comparable with those from bioreactors. A high seeding strategy further shortened the clone screening timeline. CONCLUSION: In this study, a 24-DWP semi-continuous scale-down model was successfully developed to screen for cell lines suitable for intensified perfusion culture.

5.
Prep Biochem Biotechnol ; : 1-12, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701182

RESUMO

The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch E. coli thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). E. coli cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced E. coli, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.


Thermoinduced recombinant E. coli grew less in a two-compartment scale-down model.Heat-inducible E. coli cultures at a large scale significantly decrease recombinant protein production.The accumulation of acetic and formic acid increases when E. coli is exposed to glucose and oxygen gradients.The axial flow pattern inside the PFB mimics glucose and dissolved oxygen gradients at the industrial scale.

6.
Pharm Dev Technol ; 29(4): 300-310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38497925

RESUMO

In this work, we exploit computational fluid dynamics (CFD) to evaluate stirred tank reactor (STR) process engineer parameters (PEP) and design a scale-down system (SDS) to be representative of the formulation and filling process steps for an Aluminum adjuvanted vaccine drug product (DP). To study the shear history in the SDS we used the concept of number of passages, combined with an appropriate stirring speed down scale strategy comprising of either (i) tip speed equivalence, widely used as a scale-up criterion for a shear-sensitive product, or (ii) rotating shear, a shear metric introduced by Metz and Otto in 1957 but never used as scaling criterion. The outcome of the CFD simulations shows that the tip equivalence generates a worst-case SDS in terms of shear, whereas the rotating shear scaling approach could be used to design a more representative SDS. We monitored the trend over time for "In Vitro Relative Potency" as DP Critical Quality Attribute for both scaling approaches, which highlighted the crucial role of choosing the appropriate scaling-down approach to be representative of the manufacturing scale during process characterization studies.


Assuntos
Hidrodinâmica , Vacinas , Simulação por Computador , Adjuvantes Imunológicos/química , Química Farmacêutica/métodos , Tecnologia Farmacêutica/métodos
7.
BMC Plant Biol ; 23(1): 72, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36726070

RESUMO

BACKGROUND: Conventional crop protection has major drawbacks, such as developing pest and pathogen insensitivity to pesticides and low environmental compatibility. Therefore, alternative crop protection strategies are needed. One promising approach treats crops with chemical compounds that induce the primed state of enhanced defense. However, identifying priming compounds is often tedious as it requires offline sampling and analysis. High throughput screening methods for the analysis of priming-active compounds have great potential to simplify the search for such compounds. One established method to identify priming makes use of parsley cell cultures. This method relies on measurement of fluorescence of furanocoumarins in the final sample. This study demonstrates for the first time the online measurement of furanocoumarins in microtiter plates. As not all plants produce fluorescence molecules as immune response, a signal, which is not restricted to a specific plant is required, to extend online screening methods to other plant cell cultures. It was shown that the breathing activity of primed parsley cell cultures increases, compared to unprimed parsley cell cultures. The breathing activity can by monitored online. Therefore, online identification of priming-inducing compounds by recording breathing activity represents a promising, straight-forward and highly informative approach. However, so far breathing has been recorded in shake flasks which suffer from low throughput. For industrial application we here report a high-throughput, online identification method for identifying priming-inducing chemistry. RESULTS: This study describes the development of a high-throughput screening system that enables identifying and analyzing the impact of defense priming-inducing compounds in microtiter plates. This screening system relies on the breathing activity of parsley cell cultures. The validity of measuring the breathing activity in microtiter plates to drawing conclusions regarding priming-inducing activity was demonstrated. Furthermore, for the first time, the fluorescence of the priming-active reference compound salicylic acid and of furanocoumarins were simultaneously monitored online. Dose and time studies with salicylic acid-treated parsley cell suspensions revealed a wide range of possible addition times and concentrations that cause priming. The online fluorescence measuring method was further confirmed with three additional compounds with known priming-causing activity. CONCLUSIONS: Determining the OTR, fluorescence of the priming-active chemical compound SA and of furanocoumarins in parsley suspension cultures in MTPs by online measurement is a powerful and high-throughput tool to study possible priming compounds. It allows an in-depth screening for priming compounds and a better understanding of the priming process induced by a given substance. Evaluation of priming phenomena via OTR should also be applicable to cell suspensions of other plant species and varieties and allow screening for priming-inducing chemical compounds in intact plants. These online fluorescence methods to measure the breathing activity, furanocoumarin and SA have the potential to accelerate the search for new priming compounds and promote priming as a promising, eco-friendly crop protection strategy.


Assuntos
Furocumarinas , Petroselinum , Técnicas de Cultura de Células/métodos , Ácido Salicílico , Ensaios de Triagem em Larga Escala/métodos
8.
Biotechnol Bioeng ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526313

RESUMO

Lentiviral vectors (LVs) are used in advanced therapies to transduce recipient cells for long term gene expression for therapeutic benefit. The vector is commonly pseudotyped with alternative viral envelope proteins to improve tropism and is selected for enhanced functional titers. However, their impact on manufacturing and the success of individual bioprocessing unit operations is seldom demonstrated. To the best of our knowledge, this is the first study on the processability of different Lentiviral vector pseudotypes. In this work, we compared three envelope proteins commonly pseudotyped with LVs across manufacturing conditions such as temperature and pump flow and across steps common to downstream processing. We have shown impact of filter membrane chemistry on vector recoveries with differing envelopes during clarification and observed complete vector robustness in high shear manufacturing environments using ultra scale-down technologies. The impact of shear during membrane filtration in a tangential flow filtration-mimic showed the benefit of employing higher shear rates, than currently used in LV production, to increase vector recovery. Likewise, optimized anion exchange chromatography purification in monolith format was determined. The results contradict a common perception that lentiviral vectors are susceptible to shear or high salt concentration (up to 1.7 M). This highlights the prospects of improving LV recovery by evaluating manufacturing conditions that contribute to vector losses for specific production systems.

9.
Biotechnol Bioeng ; 120(6): 1569-1583, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891886

RESUMO

Oxygen-balanced mixotrophy (OBM) is a novel type of microalgal cultivation that improves autotrophic productivity while reducing aeration costs and achieving high biomass yields on substrate. The scale-up of this process is not straightforward, as nonideal mixing in large photobioreactors might have unwanted effects in cell physiology. We simulated at lab scale dissolved oxygen and glucose fluctuations in a tubular photobioreactor operated under OBM where glucose is injected at the beginning of the tubular section. We ran repeated batch experiments with the strain Galdieria sulphuraria ACUF 064 under glucose pulse feeding of different lengths, representing different retention times: 112, 71, and 21 min. During the long and medium tube retention time simulations, dissolved oxygen was depleted 15-25 min after every glucose pulse. These periods of oxygen limitation resulted in the accumulation of coproporphyrin III in the supernatant, an indication of disruption in the chlorophyll synthesis pathway. Accordingly, the absorption cross-section of the cultures decreased steeply, going from values of 150-180 m2 kg-1 at the end of the first batch down to 50-70 m2 kg-1 in the last batches of both conditions. In the short tube retention time simulation, dissolved oxygen always stayed above 10% air saturation and no pigment reduction nor coproporphyrin III accumulation were observed. Concerning glucose utilization efficiency, glucose pulse feeding caused a reduction of biomass yield on substrate in the range of 4%-22% compared to the maximum levels previously obtained with continuous glucose feeding (0.9 C-g C-g-1 ). The missing carbon was excreted to the supernatant as extracellular polymeric substances constituted by carbohydrates and proteins. Overall, the results point out the importance of studying large-scale conditions in a controlled environment and the need for a highly controlled glucose feeding strategy in the scale-up of mixotrophic cultivation.


Assuntos
Glucose , Fotobiorreatores , Oxigênio/metabolismo , Fotossíntese , Clorofila , Biomassa
10.
Biotechnol Bioeng ; 120(9): 2523-2541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37079436

RESUMO

A novel approach of design of experiment (DoE) is developed for the optimization of key substrates of the culture medium, amino acids, and sugars, by utilizing perfusion microbioreactors with 2 mL working volume, operated in high cell density continuous mode, to explore the design space. A mixture DoE based on a simplex-centroid is proposed to test multiple medium blends in parallel perfusion runs, where the amino acids concentrations are selected based on the culture behavior in presence of different amino acid mixtures, and using targeted specific consumption rates. An optimized medium is identified with models predicting the culture parameters and product quality attributes (G0 and G1 level N-glycans) as a function of the medium composition. It is then validated in runs performed in perfusion microbioreactor in comparison with stirred-tank bioreactors equipped with alternating tangential flow filtration (ATF) or with tangential flow filtration (TFF) for cell separation, showing overall a similar process performance and N-glycosylation profile of the produced antibody. These results demonstrate that the present development strategy generates a perfusion medium with optimized performance for stable Chinese hamster ovary (CHO) cell cultures operated with very high cell densities of 60 × 106 and 120 × 106 cells/mL and a low cell-specific perfusion rate of 17 pL/cell/day, which is among the lowest reported and is in line with the framework recently published by the industry.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão/métodos , Anticorpos Monoclonais/metabolismo , Técnicas de Cultura de Células/métodos
11.
Appl Microbiol Biotechnol ; 107(7-8): 2223-2233, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843194

RESUMO

Culture medium heterogeneity is inherent in industrial bioreactors. The loss of mixing efficiency in a large-scale bioreactor yields to the formation of concentration gradients. Consequently, cells face oscillatory culture conditions that may deeply affect their metabolism. Herein, cell response to transient perturbations, namely high methanol concentration combined with hypoxia, has been investigated using a two stirred-tank reactor compartiments (STR-STR) scale-down system and a Pichia pastoris strain expressing the gene encoding enhanced green fluorescent protein (eGFP) under the control of the alcohol oxidase 1 (AOX1) promoter. Cell residence times under transient stressing conditions were calculated based on the typical hydraulic circulation times of bioreactors of tens and hundreds cubic metres. A significant increase in methanol and oxygen uptake rates was observed as the cell residence time was increased. Stressful culture conditions impaired biomass formation and triggered cell flocculation. More importantly, both expression levels of genes under the control of pAOX1 promoter and eGFP specific fluorescence were higher in those oscillatory culture conditions, suggesting that those a priori unfavourable culture conditions in fact benefit to recombinant protein productivity. Flocculent cells were also identified as the most productive as compared to ovoid cells. KEY POINTS: • Transient hypoxia and high methanol trigger high level of recombinant protein synthesis • In Pichia pastoris, pAOX1 induction is higher in flocculent cells • Medium heterogeneity leads to morphological diversification.


Assuntos
Metanol , Pichia , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Reatores Biológicos , Proteínas Recombinantes/metabolismo , Hipóxia
12.
Proteomics ; 22(19-20): e2100245, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713889

RESUMO

In large-scale quantitative mass spectrometry (MS)-based phosphoproteomics, isobaric labeling with tandem mass tags (TMTs) coupled with offline high-pH reversed-phase peptide chromatographic fractionation maximizes depth of coverage. To investigate to what extent limited sample amounts affect sensitivity and dynamic range of the analysis due to sample losses, we benchmarked TMT-based fractionation strategies against single-shot label-free quantification with spectral library-free data independent acquisition (LFQ-DIA), for different peptide input per sample. To systematically examine how peptide input amounts influence TMT-fractionation approaches in a phosphoproteomics workflow, we compared two different high-pH reversed-phase fractionation strategies, microflow (MF) and stage-tip fractionation (STF), while scaling the peptide input amount down from 12.5 to 1 µg per sample. Our results indicate that, for input amounts higher than 5 µg per sample, TMT labeling, followed by microflow fractionation (MF) and phospho-enrichment, achieves the deepest phosphoproteome coverage, even compared to single shot direct-DIA analysis. Conversely, STF of enriched phosphopeptides (STF) is optimal for lower amounts, below 5 µg/peptide per sample. As a result, we provide a decision tree to help phosphoproteomics users to choose the best workflow as a function of sample amount.


Assuntos
Fosfopeptídeos , Proteômica , Fosfopeptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteoma , Cromatografia de Fase Reversa/métodos
13.
Small ; 18(8): e2106066, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34881811

RESUMO

In the development of flexible organic field-effect transistors (OFET), downsizing and reduction of the operating voltage are essential for achieving a high current density with a low operating power. Although the bias voltage of the OFETs can be reduced by a high-k dielectric, achieving a threshold voltage close to zero remains a challenge. Moreover, the scaling down of OFETs demands the use of photolithography, and may lead to compatibility issues in organic semiconductors. Herein, a new strategy based on the ductile properties of organic semiconductors is developed to control the threshold voltage at close to zero while concurrently downsizing the OFETs. The OFETs are fabricated on prestressed polystyrene shrink film substrates at room temperature, then thermal energy (160 °C) is used to release the strain. The OFETs conformally attached to the wrinkled structure are shown to locally amplify the electric field. After shrinking, the horizontal device area is reduced by 75%, and the threshold voltage is decreased from -1.44 to -0.18 V, with a subthreshold swing of 74 mV dec-1 and intrinsic gain of 4.151 × 104 . These results reveal that the shrink film can be generally used as a substrate for downsizing OFETs and improving their performance.


Assuntos
Semicondutores , Transistores Eletrônicos
14.
Biotechnol Bioeng ; 119(11): 3194-3209, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950295

RESUMO

In large-scale bioreactors, gradients in cultivation parameters such as oxygen, substrate, and pH result in fluctuating cell environments. pH fluctuations were identified as a critical parameter for bioprocess performance. Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strains and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress factor. A detailed comparison between two-compartment reactor (two-CR) scale-down experiments and dMSCC was performed for one specific pH oscillation between reference pH 7 (~8 min) and disturbed pH 6 (~2 min). Similar reductions in growth rates were observed in both systems (dMSCC 21% and two-CR 27%) compared to undisturbed cultivation at pH 7. Afterward, systematic experiments at symmetric and asymmetric pH oscillations, between pH ranges of 4-6 and 8-11 and different intervals from 1 to 20 min, were performed to demonstrate the unique application range and throughput of the dMSCC system. Finally, the strength of the dMSCC application was demonstrated by mimicking fluctuating environmental conditions of a putative large-scale bioprocess, which is difficult to conduct using two-CRs.


Assuntos
Corynebacterium glutamicum , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , Microfluídica , Oxigênio
15.
Biotechnol Bioeng ; 119(8): 2115-2121, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470424

RESUMO

A continuous viral inactivation (CVI) tubular reactor was designed for low pH viral inactivation within a continuous downstream system across multiple scales of operation. The reactors were designed to provide a minimum residence time of >60 min. The efficacy of this tubular reactor was tested with xenotropic murine leukemia virus (X-MuLV) through pulse injection experiments. It was determined that the minimum residence time of the small-scale reactor design, when operated at the target process flow rate, occurred between 63 and 67 min. Inactivation kinetics were compared between continuous operation and standard batch practices using three monoclonal antibodies. The quantification of the virus log reduction values (LRV) was similar between the two modes of operation and most of the acid-treated samples had virus concentrations below the limit of detection. However, residual infectivity was still present in the endpoint batch samples of two experiments while the continuous samples always remained below the limit of detection. This provides the foundation for leveraging a standard batch-based model to quantify the LRV for a CVI unit operation.


Assuntos
Inativação de Vírus , Animais , Concentração de Íons de Hidrogênio , Cinética , Vírus da Leucemia Murina/fisiologia , Camundongos
16.
Microb Cell Fact ; 21(1): 170, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999607

RESUMO

BACKGROUND: Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. RESULTS: We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. CONCLUSIONS: This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.


Assuntos
Produtos Biológicos , Escherichia coli , Aminoácidos/metabolismo , Produtos Biológicos/metabolismo , Códon/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes
17.
Biotechnol Lett ; 44(7): 813-822, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35650455

RESUMO

OBJECTIVES: Hydrodynamics, mixing and shear are terms often used when explaining or modelling scale differences, but other scale differences, such as evaporation, can arise from non-hydrodynamic factors that can be managed with some awareness and effort. RESULTS: We present an engineering approach to the prediction of evaporation rates in bioreactors based on gH2O/Nm3 of air entering and leaving the bioreactor and confirm its usefulness in a 28-run design of experiments investigating the effects of aeration rate (0.02 to 2.0 VVM), condenser temperature (10 to 20 °C), fill (2.5 to 5 kg), broth temperature (25 to 40 °C) and agitator speed (25 to 800 rpm). Aeration rate and condenser temperature used in the engineering prediction provided a practically useful estimate of evaporation; the other factors, while statistically identified as having some influence, were of negligible practical usefulness. Evaporation rates were never found to be zero, and could be at least 10% different to those expected at scale. CONCLUSIONS: An assessment of evaporation rates for any project is encouraged, and it is recommended that the effects are accounted for by measurements, modelling or by tuning the exhaust cooling device temperature to minimize scale differences.


Assuntos
Reatores Biológicos , Temperatura
18.
Cytotherapy ; 23(10): 953-959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34229963

RESUMO

BACKGROUND AIMS: This article describes the development of a small-scale model for Ficoll-based cell separation as part of process development of an advanced therapy medicinal product and its qualification. Because of the complexity of biological products, their manufacturing process as well as characterization and control needs to be accurately understood. Likewise, scale-down models serve as an indispensable tool for process development, characterization, optimization and validation. This scale-down model represents a cell processor device widely used in advance therapies. This approach is inteded to optimise resources and to focus its use on process characterisation studies under the paradigm of the Quality by design. A scale-down model should reflect the large manufacturing scale. Consequently, this simplified system should offer a high degree of control over the process parameters to depict a robust model, even considering the process limitations. For this reason, a model should be developed and qualified for the intended purpose. METHODS: Process operating parameters were studied, and their resulting performance at full scale was used as a baseline to guide scale-down model development. Once the model was established, comparability runs were performed by establishing standard operating conditions with bone marrow samples. These analyses showed consistency between the bench and the large scale. Additionally, statistical analyses were employed to demonstrate equivalence. RESULTS: The process performance indicators and assessed quality attributes were equivalent and fell into the acceptance ranges defined for the large-scale process. CONCLUSIONS: This scale-down model is suitable for use in process characterization studies.


Assuntos
Produtos Biológicos , Ficoll
19.
Biotechnol Bioeng ; 118(9): 3375-3381, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638417

RESUMO

In continuous pharmaceutical manufacturing, consisting of a perfused batch fermentation and integrated continuous downstream processing, the continuous capture is the linking unit operation. For the development of this unit operation, scale-down models (SDMs) are crucial, whereas discrete, noncontinuous SDMs are preferred over continuous SDM due to their simplistic nature, reduced material consumption, and shorter operation time. The results presented in this study show the suitability of a discrete SDM approach, compared to a continuous SDM for a continuous protein A purification step.


Assuntos
Anticorpos Monoclonais , Modelos Teóricos , Tecnologia Farmacêutica , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetulus
20.
Biotechnol Bioeng ; 118(12): 4735-4750, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506651

RESUMO

The obligate aerobic nature of Pseudomonas putida, one of the most prominent whole-cell biocatalysts emerging for industrial bioprocesses, questions its ability to be cultivated in large-scale bioreactors, which exhibit zones of low dissolved oxygen tension. P. putida KT2440 was repeatedly subjected to temporary oxygen limitations in scale-down approaches to assess the effect on growth and an exemplary production of rhamnolipids. At those conditions, the growth and production of P. putida KT2440 were decelerated compared to well-aerated reference cultivations, but remarkably, final biomass and rhamnolipid titers were similar. The robust growth behavior was confirmed across different cultivation systems, media compositions, and laboratories, even when P. putida KT2440 was repeatedly exposed to dual carbon and oxygen starvation. Quantification of the nucleotides ATP, ADP, and AMP revealed a decrease of intracellular ATP concentrations with increasing duration of oxygen starvation, which can, however, be restored when re-supplied with oxygen. Only small changes in the proteome were detected when cells encountered oscillations in dissolved oxygen tensions. Concluding, P. putida KT2440 appears to be able to cope with repeated oxygen limitations as they occur in large-scale bioreactors, affirming its outstanding suitability as a whole-cell biocatalyst for industrial-scale bioprocesses.


Assuntos
Reatores Biológicos/microbiologia , Oxigênio/metabolismo , Pseudomonas putida , Biomassa , Carbono/metabolismo , Glicolipídeos/metabolismo , Engenharia Metabólica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA