Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 215, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680547

RESUMO

BACKGROUND: High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. METHODS: Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. RESULTS: In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. CONCLUSIONS: Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA/biossíntese , NF-kappa B/metabolismo , Esquizofrenia/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Animais , Encéfalo/patologia , Citocinas/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Fatores de Transcrição/genética
2.
Brain Behav Immun ; 88: 826-839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32450195

RESUMO

The transcription factor nuclear factor kappa B (NF-κB) regulates the expression of many inflammatory genes that are overexpressed in a subset of people with schizophrenia. Transcriptional reduction in one NF-κB inhibitor, Human Immunodeficiency Virus Enhancer Binding Protein 2 (HIVEP2), is found in the brain of patients, aligning with evidence of NF-κB over-activity. Cellular co-expression of HIVEP2 and cytokine transcripts is a prerequisite for a direct effect of HIVEP2 on pro-inflammatory transcription, and we do not know if changes in HIVEP2 and markers of neuroinflammation are occurring in the same brain cell type. We performed in situ hybridisation on postmortem dorsolateral prefrontal cortex tissue to map and compare the expression of HIVEP2 and Serpin Family A Member 3 (SERPINA3), one of the most consistently increased inflammatory genes in schizophrenia, between schizophrenia patients and controls. We find that HIVEP2 expression is neuronal and is decreased in almost all grey matter cortical layers in schizophrenia patients with neuroinflammation, and that SERPINA3 is increased in the dorsolateral prefrontal cortex grey matter and white matter in the same group of patients. We are the first to map the upregulation of SERPINA3 to astrocytes and to some neurons, and find evidence to suggest that blood vessel-associated astrocytes are the main cellular source of SERPINA3 in the schizophrenia cortex. We show that a lack of HIVEP2 in mice does not cause astrocytic upregulation of Serpina3n but does induce its transcription in neurons. We speculate that HIVEP2 downregulation is not a direct cause of astrocytic pro-inflammatory cytokine synthesis in schizophrenia but may contribute to neuronally-mediated neuroinflammation.


Assuntos
Esquizofrenia , Animais , Citocinas , Proteínas de Ligação a DNA , Humanos , Camundongos , NF-kappa B , Esquizofrenia/genética , Especificidade da Espécie , Fatores de Transcrição
3.
Neuroscience ; 488: 20-31, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218885

RESUMO

Neuropathic pain is a type of chronic pain with complex mechanisms, and current treatments have shown limited success in treating patients suffering from chronic pain. Accumulating evidence has shown that the pathogenesis of neuropathic pain is mediated by the plasticity of excitatory neurons in the dorsal horn of the spinal cord, which provides insights into the treatment of hyperalgesia. In this study, we found that Schnurri-2 (Shn2) was significantly upregulated in the L4-L6 segments of the spinal cord of C57 mice with spared nerve injury, which was accompanied by an increase in GluN2D subunit and glutamate receptor subunit 1 (GluR1) levels. Knocking down the expression of Shn2 using a lentivirus in the spinal cord decreased the GluN2D subunit and GluR1 levels in spared nerve injury mice and eventually alleviated mechanical allodynia. In summary, Shn2 regulates neuropathic pain, promotes the upregulation of GluN2D in glutamatergic neurons and increases the accumulation of GluR1 in excitatory neurons. Taken together, our study provides a new underlying mechanism for the development of neuropathic pain.


Assuntos
Dor Crônica , Proteínas de Ligação a DNA , Neuralgia , Receptores de Glutamato , Animais , Dor Crônica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hiperalgesia/metabolismo , Camundongos , Neuralgia/metabolismo , Receptores de Glutamato/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
4.
Neurosci Lett ; 609: 159-64, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26483320

RESUMO

Schnurri-2 (Shn-2) knockout (KO) mice have been proposed as a preclinical neuroinflammatory schizophrenia model. We used behavioral studies and imaging markers that can be readily translated to human populations to explore brain effects of inflammation. Shn-2 KO mice and their littermate control mice were imaged with two novel PET ligands; an inflammation marker [(11)C]PBR28 and the mGluR5 ligand [(18)F]FPEB. Locomotor activity was measured using open field exploration with saline, methamphetamine or amphetamine challenge. A significantly increased accumulation of [(11)C]PBR28 was found in the cortex, striatum, hippocampus and olfactory bulb of Shn-2 KO mice. Increased mGluR5 binding was also observed in the cortex and hippocampus of the Shn-2 KO mice. Open field locomotor testing revealed a large increase in novelty-induced hyperlocomotion in Shn-2 KO mice with abnormal (decreased) responses to either methamphetamine or amphetamine. These data provide additional support to demonstrate that the Shn-2 KO mouse model exhibits several behavioral and pathological markers resembling human schizophrenia making it an attractive translational model for the disease.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas de Ligação a DNA/genética , Comportamento Exploratório , Atividade Motora , Receptor de Glutamato Metabotrópico 5/metabolismo , Acetamidas , Anfetamina/farmacologia , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Radioisótopos de Flúor , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Metanfetamina/farmacologia , Camundongos Knockout , Nitrilas , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos , Esquizofrenia/metabolismo
5.
Nucleus ; 1(2): 144-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20617112

RESUMO

CLIC4 is a highly conserved, multifunctional member of the chloride intracellular channel family of proteins. The protein is largely cytoplasmic but translocates to the nucleus upon a variety of stimuli including TGF-beta, TNF-alpha and etoposide. Nuclear resident CLIC4 causes growth arrest, terminal differentiation and apoptosis. Recently, it was discovered that TGF-beta causes CLIC4 to associate with Schnurri-2 and together they translocate to the nucleus and dissociate thereafter. The nuclear function of CLIC4 was further illuminated by the discovery that CLIC4 enhances TGF-beta signaling by associating with phospho-Smad2 and 3 and preventing their dephosphorylation. Enhanced TGF-beta dependent gene expression and growth inhibition are downstream consequences of this activity of CLIC4. In this article, we speculate on other consequences of the CLIC4 relation to TGF-beta signaling and the potential for CLIC4 to participate in other cellular functions related to normal homeostasis and disease.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Doença , Homeostase , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA