Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37170957

RESUMO

The peripheral nervous system (PNS) represents a highly heterogeneous entity with a broad range of functions, ranging from providing communication between the brain and the body to controlling development, stem cell niches and regenerative processes. According to the structure and function, the PNS can be subdivided into sensory, motor (i.e. the nerve fibers of motor neurons), autonomic and enteric domains. Different types of neurons correspond to these domains and recent progress in single-cell transcriptomics has enabled the discovery of new neuronal subtypes and improved the previous cell-type classifications. The developmental mechanisms generating the domains of the PNS reveal a range of embryonic strategies, including a variety of cell sources, such as migratory neural crest cells, placodal neurogenic cells and even recruited nerve-associated Schwann cell precursors. In this article, we discuss the diversity of roles played by the PNS in our body, as well as the origin, wiring and heterogeneity of every domain. We place a special focus on the most recent discoveries and concepts in PNS research, and provide an outlook of future perspectives and controversies in the field.


Assuntos
Neurogênese , Sistema Nervoso Periférico , Crista Neural , Células de Schwann , Neurônios Motores
2.
J Anat ; 237(4): 655-671, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598482

RESUMO

Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4-9.5 weeks post-fertilisation using Amira 3D-reconstruction and Cinema 4D-remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para-aortic region and then continued ventrally to the pre-aortic region, where they formed autonomic pre-aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region-specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para-aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS-dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3-4 Carnegie stages later.


Assuntos
Desenvolvimento Embrionário/fisiologia , Sistema Nervoso Entérico/embriologia , Intestinos/inervação , Organogênese/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Humanos , Intestinos/embriologia , Crista Neural/citologia
3.
Biochem Biophys Res Commun ; 486(2): 506-513, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28322798

RESUMO

In an embryonic developmental stage of the peripheral nervous system (PNS), Schwann cell precursors migrate along neuronal axons to their final destinations. After birth, they eventually wrap around individual axons to form myelin sheaths, which insulate axons to increase the nerve conduction velocity. Some growth factors and adhesion molecules are known to control these developmental stages from in the fish to in the mammal. Neuregulin-1 (NRG1), which is composed of many alternative splicing variants, is such a growth factor. Among these variants, the type III isoform of NRG1, interacting with ErbB2 and ErbB3 receptors on Schwann cells, plays an essential role in myelination in the fish and the mammal. NRG1 type III is also known to promote migration of fish Schwann cell precursors; however, it still remains to be clarified whether mammalian type III isoform does it. We have therefore generated type III isoform-specific knockout mice in inbred strain. The mice result in delayed migration of the precursors from the dorsal to ventral root via a peripheral ganglion, comparing littermate controls. Similar results are observed in an in vitro migration assay using reaggregated Schwann cell precursors. Furthermore, the knockout mice exhibit reduced myelin thickness, consistent with the established role of NRG1 type III in myelination. These results indicate that in mice, NRG1 type III plays a key role not only in myelination but also in migration.


Assuntos
Bainha de Mielina/genética , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/metabolismo , Medula Espinal/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Expressão Gênica , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Neuregulina-1/genética , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Células de Schwann/patologia , Transdução de Sinais , Medula Espinal/patologia
4.
Glia ; 63(8): 1376-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921593

RESUMO

In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.


Assuntos
Células de Schwann/metabolismo , Animais , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismo
5.
Biochem Biophys Res Commun ; 452(3): 782-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25204498

RESUMO

The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Receptor ErbB-3/genética , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Diferenciação Celular , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuregulina-1/genética , Neuregulina-1/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Transdução de Sinais
6.
Front Cell Dev Biol ; 10: 867153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372344

RESUMO

Intermediate cells of the stria vascularis are neural crest derived melanocytes. They are essential for the establishment of the endocochlear potential in the inner ear, which allows mechanosensory hair cells to transduce sound into nerve impulses. Despite their importance for normal hearing, how these cells develop and migrate to their position in the lateral wall of the cochlea has not been studied. We find that as early as E10.5 some Schwann cell precursors in the VIIIth ganglion begin to express melanocyte specific markers while neural crest derived melanoblasts migrate into the otic vesicle. Intermediate cells of both melanoblast and Schwann cell precursor origin ingress into the lateral wall of the cochlea starting at around E15.5 following a basal to apical gradient during embryonic development, and continue to proliferate postnatally.

7.
Cells Dev ; 168: 203729, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34456178

RESUMO

Schwann cell precursors (SCPs) are a transient population in the embryo, closely associated with nerves along which they migrate into the periphery of the body. Long considered to be progenitors that only form Schwann cells-the myelinating cells of nerves, current evidence suggests that SCPs have much broader developmental potential. Indeed, different cell marking techniques employed over the past 20 years have identified multiple novel SCP derivatives throughout the body. It is now clear that SCPs represent a multipotent progenitor population, which also display a level of plasticity in response to injury. Moreover, they originate from multiple origins in the embryo and may reflect several distinct subpopulations in terms of molecular identity and fate. Here we review SCP origins, derivatives and plasticity in development, growth and repair.


Assuntos
Embrião de Mamíferos , Células de Schwann , Diferenciação Celular/fisiologia , Células de Schwann/fisiologia
8.
Cells Dev ; 166: 203686, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33994354

RESUMO

Schwann cell precursors (SCPs) are a transient population in the embryo, closely associated with nerves along which they migrate into the periphery of the body. Long considered to be progenitors that only form Schwann cells-the myelinating cells of nerves, current evidence suggests that SCPs have much broader developmental potential. Indeed, different cell marking techniques employed over the past 20 years have identified multiple novel SCP derivatives throughout the body. It is now clear that SCPs represent a multipotent progenitor population, which also display a level of plasticity in response to injury. Moreover, they originate from multiple origins in the embryo and may reflect several distinct subpopulations in terms of molecular identity and fate. Here we review SCP origins, derivatives and plasticity in development, growth and repair.


Assuntos
Células de Schwann/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Modelos Biológicos , Plasticidade Neuronal
9.
Front Mol Neurosci ; 12: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971890

RESUMO

The cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precursors (SCP) in early embryonic nerves, and immature Schwann cells (iSch) in late embryonic and perinatal nerves. SCP are formed when neural crest cells enter nascent nerves and form intimate relationships with axons, a diagnostic feature of glial cells. This involves large-scale changes in gene expression, including the activation of established glial cell markers. Like early glia in the CNS, radial glia, SCP retain developmental multipotency and contribute to other crest-derived lineages during embryonic development. SCP, as well as closely related cells termed boundary cap cells, and later stages of the Schwann cell lineage have all been implicated as the tumor initiating cell in NF1 associated neurofibromas. iSch are formed from SCP in a process that involves the appearance of additional differentiation markers, autocrine survival circuits, cellular elongation, a formation of endoneurial connective tissue and basal lamina. Finally, in peri- and post-natal nerves, iSch are reversibly induced by axon-associated signals to form the myelin and non-myelin Schwann cells of adult nerves. This review article discusses early Schwann cell development in detail and describes a large number of molecular signaling systems that control glial development in embryonic nerves.

10.
Stem Cell Reports ; 8(6): 1714-1726, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28506533

RESUMO

Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-ß and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system.


Assuntos
Doenças Desmielinizantes/terapia , Células-Tronco Pluripotentes/metabolismo , Células de Schwann/transplante , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular , Células Cultivadas , Reprogramação Celular , Proteína GAP-43/metabolismo , Humanos , Neuregulina-1/farmacologia , Células-Tronco Pluripotentes/citologia , Receptor de Fator de Crescimento Neural/metabolismo , Regeneração , Células de Schwann/citologia , Células de Schwann/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Biochem Biophys Rep ; 6: 113-123, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955869

RESUMO

During embryonic development of the peripheral nervous system (PNS), Schwann cell precursors migrate along neuronal axons to their final destinations, where they will myelinate the axons after birth. While the intercellular signals controlling Schwann cell precursor migration are well studied, the intracellular signals controlling Schwann cell precursor migration remain elusive. Here, using a rat primary cell culture system, we show that Dock8, an atypical Dock180-related guanine-nucleotide exchange factor (GEF) for small GTPases of the Rho family, specifically interacts with Nck1, an adaptor protein composed only of Src homology (SH) domains, to promote Schwann cell precursor migration induced by platelet-derived growth factor (PDGF). Knockdown of Dock8 or Nck1 with its respective siRNA markedly decreases PDGF-induced cell migration, as well as Rho GTPase activation, in precursors. Dock8, through its unique N-terminal proline-rich motif, interacts with the SH3 domain of Nck1, but not with other adaptor proteins composed only of SH domains, e.g. Grb2 and CrkII, and not with the adaptor protein Elmo1. Reintroduction of the proline-rich motif mutant of Dock8 in Dock8 siRNA-transfected Schwann cell precursors fails to restore their migratory abilities, whereas that of wild-type Dock8 does restore these abilities. These results suggest that Nck1 interaction with Dock8 mediates PDGF-induced Schwann cell precursor migration, demonstrating not only that Nck1 and Dock8 are previously unanticipated intracellular signaling molecules involved in the regulation of Schwann cell precursor migration but also that Dock8 is among the genetically-conservative common interaction subset of Dock family proteins consisting only of SH domain adaptor proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA