Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Environ Manage ; 356: 120590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522281

RESUMO

Understanding the origins of sediment transport in river systems is crucial for effective watershed management, especially after catastrophic events. This information is essential for the development of integrated strategies that guarantee water security in river basins. The present study aimed to investigate the rupture of the B1 tailings dam of the Córrego do Feijão mine, which drastically affected the Brumadinho region (Minas Gerais, Brazil). To address this issue, a confluence-based sediment fingerprinting approach was developed through the SedSAT model. Uncertainty was assessed through Monte Carlo simulations and Mean Absolute Error (MAE). Estimates of the overall average contributions of each tributary were quantified for each station and annually during the period 2019-2021. It was observed that the sampling point PT-09, closest to the dam breach, contributed to almost 80% of the Paraopeba River in 2019. Despite the dredging efforts, this percentage increased to 90% in 2020 due to the need to restore the highly degraded area. Additionally, the main tributaries contributing to sediment increase in the river are Manso River "TT-03" (almost 36%), associated with an area with a high percentage of urban land use, and Cedro stream "TT-07" (almost 71%), whose geology promotes erosion, leading to higher sediment concentration. Uncertainties arise from the limited number of available tracers, variations caused by dredging activities, and reduced data in 2020 due to the pandemic. Parameters such as land use, riparian vegetation degradation, downstream basin geology, and increased precipitation are key factors for successfully assessing tributary contributions to the Paraopeba River. The obtained results are promising for a preliminary analysis, allowing the quantification of key areas due to higher erosion and studying how this disaster affected the watershed. This information is crucial for improving decision-making, environmental governance, and the development of mitigating measures to ensure water security. This study is pioneering in evaluating this methodology in watersheds affected by environmental disasters, where restoration efforts are ongoing.


Assuntos
Monitoramento Ambiental , Colapso Estrutural , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais , Efeitos Antropogênicos , Sedimentos Geológicos , Política Ambiental , Brasil
2.
Environ Chem Lett ; 22(2): 499-504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434774

RESUMO

Rainfall and land-use interactions drive temporal shifts in suspended sediment sources, yet the magnitude of such changes remains poorly understood due to the lack of land-use specific source tracers. We investigated α,ω-dicarboxylic fatty acid root-specific biomarkers, as diagnostic tracers for apportioning sources of time-integrated suspended sediment samples collected from a grassland dominated agricultural catchment in the southwest of England during the wet winter period. Applying fatty acids-specific stable carbon isotope analysis and a Bayesian isotope mixing model, we show that stream banks contributed most of the sediment in the early winter, i.e. October-December, while winter cereal-dominated arable land contributed more than half of the sediment during the late winter, i.e. January-March. The dominant sediment source shifted in conjunction with a period of prolonged consecutive rainfall days in the later period suggesting that intervention required to mitigate soil erosion and sediment delivery should adapt to changing rainfall patterns. Our novel findings demonstrate that isotopic signatures of α,ω-dicarboxylic fatty acids are promising tracers for understanding the resistance of agricultural soils to water erosion and quantifying the interactive effects of extreme rainfall and land use on catchment sediment source dynamics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-023-01684-1.

3.
J Environ Manage ; 345: 118649, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481881

RESUMO

Applications of sediment source fingerprinting continue to increase globally as the need for information to support improved management of the sediment problem persists. In our novel research, a Bayesian fingerprinting approach using MixSIAR was used with geochemical signatures, both without and with informative priors based on particle size and slope. The source estimates were compared with a newly proposed Source Sensitivity Index (SSI) and outputs from the INVEST-SDR model. MixSIAR results with informative priors indicated that agricultural and barren lands are the principal sediment sources (contributing ∼5-85% and ∼5-80% respectively during two sampling periods i.e. 2018-2019 and 2021-2022) with forests being less important. The SSI spatial maps (using % clay and slope as informative priors) showed >78% agreement with the spatial map derived using the INVEST-SDR model in terms of sub-catchment prioritization for spatial sediment source contributions. This study demonstrates the benefits of combining geochemical sediment source fingerprinting with SSI indices in larger catchments where the spatial prioritization of soil and water conservation is both challenging but warranted.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Teorema de Bayes , Solo , Agricultura
4.
J Environ Manage ; 336: 117657, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878061

RESUMO

The effective management of sediment losses in large river systems is essential for maintaining the water resources and ecosystem services they provide. However, budgetary, and logistical constraints often mean that the understanding of catchment sediment dynamics necessary to deliver targeted management is unavailable. This study trials the collection of accessible recently deposited overbank sediment and the measurement of its colour using an office document scanner to identify the evolution of sediment sources rapidly and inexpensively in two large river catchments in the UK. The River Wye catchment has experienced significant clean-up costs associated with post-flood fine sediment deposits in both rural and urban areas. In the River South Tyne, fine sand is fouling potable water extraction and fine silts degrade salmonid spawning habitats. In both catchments, samples of recently deposited overbank sediment were collected, fractionated to either <25 µm or 63-250 µm, and treated with hydrogen peroxide to remove organic matter before colour measurement. In the River Wye catchment, an increased contribution from sources over the geological units present in a downstream direction was identified and was attributed to an increasing proportion of arable land. Numerous tributaries draining different geologies allowed for overbank sediment to characterise material on this basis. In the River South Tyne catchment, a downstream change in sediment source was initially found. The River East Allen was identified as a representative and practical tributary sub-catchment for further investigation. The collection of samples of channel bank material and topsoils therein allowed channel banks to be identified as the dominant sediment source with an increasing but small contribution from topsoils in a downstream direction. In both study catchments, the colour of overbank sediments could quickly and inexpensively inform the improved targeting of catchment management measures.


Assuntos
Ecossistema , Inundações , Cor , Sedimentos Geológicos
5.
J Soils Sediments ; 23(12): 4187-4207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38037661

RESUMO

Purpose: This research aimed to determine if a severe wildfire caused changes in the source of sediment being delivered to downstream aquatic systems and evaluate the use of polycyclic aromatic hydrocarbons (PAHs) and color properties as tracers. Methods: Sediment samples were collected from 2018 to 2021 in three tributaries impacted by the 2018 Shovel Lake wildfire and from two sites on the mainstem of the Nechako River, British Columbia. Source samples were collected from burned and unburned soils as well as from channel banks and road-deposited sediment. Samples were analyzed for color properties and for the 16 US Environmental Protection Agency priority PAHs. After statistical tests to determine the conservatism and ability to discriminate between sources by the tracers, the MixSIAR unmixing model was used, and its outputs were tested using virtual mixtures. Result: In the tributaries, burned topsoil was an important contributor to sediment (up to 50%). The mainstem Nechako River was not influenced as significantly by the fires as the greatest contributor was banks (up to 89%). The color properties provided more realistic results than those based on PAHs. Conclusion: In smaller watersheds, the wildfire had a noticeable impact on sediment sources, though the impacts of the fire seemed to be diluted in the distal mainstem Nechako River. Color tracers behaved conservatively and discriminated between contrasting sources. Due to their low cost and reliability, they should be considered more widely. While PAHs did not work in this study, there are reasons to believe they could be a useful tracer, but more needs to be understood about their behavior and degradation over time. Supplementary Information: The online version contains supplementary material available at 10.1007/s11368-023-03565-0.

6.
Environ Sci Technol ; 56(3): 1615-1626, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045246

RESUMO

Metals and polycyclic aromatic hydrocarbons (PAHs) are common pollutants in urban streambed sediment, yet their occurrence is highly variable and difficult to predict. To investigate sources of PAHs and metals to streambed sediment, we sampled pavement dust, soil, and streambed sediment in 10 urban watersheds in three regions of the United States and applied a fallout-radionuclide-based sediment-source analysis to quantify the pavement dust contribution to stream sediment (%dust). We also mapped the area of sealcoated pavement in each watershed (%sealed) to investigate the role of coal-tar pavement sealant (CTS) as a PAH source. Median total and carbon-normalized total PAH concentrations were significantly higher in streambed sediment in the Northeast (54.3 mg/kg and 2.71 mg/gOC) and Southeast (5.37 mg/kg and 1.36 mg/gOC), where CTS is commonly used, than in the Northwest (2.11 mg/kg and 0.071 mg/gOC), where CTS is rarely used. Generalized additive models indicated that %sealed and in some cases %dust significantly affected total PAH concentrations in streambed sediments. The %dust was a significant variable for common urban metals: Cu, Pb, and Zn. These findings advance our quantitative understanding of the role of pavement dust as a source and a vector of contaminants to urban streams.


Assuntos
Alcatrão , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alcatrão/análise , Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Sedimentos Geológicos , Metais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 311: 114780, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35278921

RESUMO

Accessible sediment provenance information is highly desirable for guiding targeted interventions for reducing excess diffuse agricultural sediment losses to water. Conventional sediment source fingerprinting methods can provide this information, but at high cost, thereby limiting their widespread application for catchment management. The use of sediment colour measured using an office document scanner represents an easy, fast, and inexpensive alternative method to trace sediment sources. However, the potential for poor source discrimination and its non-conservatism due to enrichment in sediment organic matter content during sediment transport represent possible limitations to its use. As such, the treatment of samples using hydrogen peroxide to remove organic matter can potentially improve source discrimination based upon geology or soil type, and the mapping of differences in colour between source and sediment samples removing the need for a priori source groups, were trialled in a new colour-based tracing framework. The River Avon in southwest England and Holbeck/Wath Beck in northeast England were studied as they have been identified as being of high priority for the targeting of on-farm advice delivered through a long-running agri-environment initiative. In both catchments, colour was effective at identifying that a small proportion of each which would be considered as being low erosion risk was the dominant source of the sampled sediment. This was due to poor connectivity between fields deemed to be at high risk of erosion and stream channels. The hydrogen peroxide sample treatment confirmed that sediment colour was not significantly altered by enrichment in organic matter content. This treament and the mapped comparison between source and suspended sediment colour improved source discrimination allowing for the more spatially-refined identification of critical sediment source areas. It is argued that this new inexpensive procedure can potentially deliver more precise and reliable information to catchment managers than costly quantitative sediment source fingerprinting methods. This method can greatly increase the availability of catchment-specific sediment source data and therefore the robust targeting of management efforts on a national scale.

8.
J Environ Manage ; 324: 116260, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179467

RESUMO

Reliable quantitative information on sediment sources to rivers is critical to mitigate contamination and target conservation and restoration actions. However, for large-scale river basins, determination of the relative importance of sediment sources is complicated by spatiotemporal variability in erosional processes and sediment sources, heterogeneity in sediment transport and deposition, and a paucity of sediment monitoring data. Sediment source fingerprinting is an increasingly adopted field-based technique that identifies the nature and relative source contribution of sediment transported in waterways. Notably, sediment source fingerprinting provides information that is independent of other field, modeling, or remotely sensed techniques. However, the diversity in sampling, analytical, and interpretive methods for sediment fingerprinting has been recognized as a problem in terms of developing standardized procedures for its application at the scale of large river basins. Accordingly, this review focuses on sediment source fingerprinting studies conducted within the Mississippi River Basin (MRB), summarizes unique information provided by sediment source fingerprinting that is distinct from traditional monitoring techniques, evaluates consistency and reliability of methodological approaches among MRB studies, and provides prospects for the use of sediment source fingerprinting as an aid to large-scale landscape conservation and restoration under current management frameworks. Most MRB studies reported credible fingerprinting results and found near-channel sources to be the dominant sediment sources in most cases, and yet a lack of standardization in procedural steps makes results difficult to compare. Findings from MRB studies demonstrated that sediment source fingerprinting is a highly valuable and reliable sediment source assessment approach to assist land and water resource management under current management frameworks, but efforts are needed to make this technique applicable in large-scale landscape conservation and restoration efforts. We summarize research needs and discuss sediment fingerprinting use for basin-scale management efforts with the aim of encouraging that this technique is robust and reliable as it moves forward.


Assuntos
Sedimentos Geológicos , Rios , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Mississippi
9.
J Soils Sediments ; 22(6): 1648-1661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495078

RESUMO

Purpose: Identifying best practices for sediment fingerprinting or tracing is important to allow the quantification of sediment contributions from catchment sources. Although sediment fingerprinting has been applied with reasonable success, the deployment of this method remains associated with many issues and limitations. Methods: Seminars and debates were organised during a 4-day Thematic School in October 2021 to come up with concrete suggestions to improve the design and implementation of tracing methods. Results: First, we suggest a better use of geomorphological information to improve study design. Researchers are invited to scrutinise all the knowledge available on the catchment of interest, and to obtain multiple lines of evidence regarding sediment source contributions. Second, we think that scientific knowledge could be improved with local knowledge and we propose a scale of participation describing different levels of involvement of locals in research. Third, we recommend the use of state-of-the-art sediment tracing protocols to conduct sampling, deal with particle size, and examine data before modelling and accounting for the hydro-meteorological context under investigation. Fourth, we promote best practices in modelling, including the importance of running multiple models, selecting appropriate tracers, and reporting on model errors and uncertainty. Fifth, we suggest best practices to share tracing data and samples, which will increase the visibility of the fingerprinting technique in geoscience. Sixth, we suggest that a better formulation of hypotheses could improve our knowledge about erosion and sediment transport processes in a more unified way. Conclusion: With the suggested improvements, sediment fingerprinting, which is interdisciplinary in nature, could play a major role to meet the current and future challenges associated with global change. Supplementary information: The online version contains supplementary material available at 10.1007/s11368-022-03203-1.

10.
J Environ Manage ; 299: 113593, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467866

RESUMO

Soil erosion and sediment transport are controlled by complex factors promoting variable responses in catchment's erosion rates and sediment yields. To mitigate eventual negative effects derived from altered fluxes, integrated catchment management plans should assess the sediment cascade from upstream erosive processes, sediment mobilization through hillslopes and within the channel, up to downstream sediment yields. This study links hydro-sedimentary dynamics with sediment fingerprinting source ascription in a mid-mountainous Mediterranean catchment during five hydrological years (2013-2018). Soil colour parameters and fallout radionuclides were used as tracers to predict dominant suspended sediment sources using (i) a Bayesian mixing model (MixSIAR) and (ii) an End Member Mixing Analysis (EMMA). MixSIAR suggested that crops were the dominant source in most of the collected samples. EMMA showed similar results, clustering all except one sediment samples close to the crop and channel bank signatures. In addition, a quantitative hysteresis index was calculated and floods were clustered in function of their hydro-sedimentary characteristics. Despite different patterns were associated to each of the four identified clusters (e.g. different sediment loads and maximum suspended sediment concentrations), correlation between sediment origin and hydro-sedimentary variables was not significant due to the little seasonal variation in source type ascription.


Assuntos
Sedimentos Geológicos , Solo , Teorema de Bayes , Monitoramento Ambiental , Inundações , Radioisótopos
11.
Environ Monit Assess ; 192(9): 603, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32857191

RESUMO

This paper identifies the main sediment sources to the Beaudet Reservoir in Quebec (Canada) using sediment fingerprinting. The reservoir, which is built on the Bulstrode River and provides drinking water to Victoriaville, has decreased in capacity by 35% in the past 35 years. This study provides new data on fingerprinting in large and complex watersheds, a first in the province of Quebec. Nine sampling sites on the Bulstrode River and its three main tributaries were selected and five sampling campaigns were conducted. Samples from river bank profiles and adjacent fields, along with suspended sediments, were collected. All samples were sieved to 2 mm and analyzed for 137Caesium, 15 geochemical elements and sieved to 63 µm for color analysis. Source classification, based on an ANOVA test to verify the independence hypothesis and iterative linear discriminant analysis to optimize the ratio of inter-group/within-group variability, resulted in four sample classes: agricultural soils, forested soils, stream bank bottom and stream bank top. A Kruskal-Wallis H test then identified 21 out of the 32 tracers with p value < 0.05. The linear discriminant analysis led to a set of 14 tracers, namely 137Cs and 13 color coefficients with a discriminating result of 94%. That combination of 137Cs and color coefficients proved to be a cost-effective fingerprint. Based on MixSIAR modeling results, this sediment fingerprinting study has demonstrated that the main sediment sources varied within the watershed but, generally, forested soil particles dominated (33 to 49%), then agricultural soils (43 to 50%) reflecting the land use changes, followed by stream bank bottoms (82%) at the Beaudet Reservoir.


Assuntos
Radioisótopos de Césio , Sedimentos Geológicos , Região dos Apalaches , Canadá , Monitoramento Ambiental , Quebeque , Rios
12.
Environ Monit Assess ; 192(12): 806, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263917

RESUMO

Sedimentation of water bodies affects water quality and biotic communities of aquatic ecosystems. Understanding the causes and origin of sediments is crucial for planning watershed management activities and safeguarding aquatic biodiversity and critical ecosystem services. Rwanda, as a hilly country, experiences increased sedimentation due to unsustainable land use practices in upstream catchment areas which negatively affects irrigation, fishing and hydropower generation. We used a sediment fingerprinting technique to determine sources of sedimentation and identifying hotspots of soil erosion in Sebeya River Catchment (area of 357 km2), a sub-catchment of Lake Kivu located in Northwest Rwanda. Five soil samples were collected from each of the six geological classes, and 34 suspended sediment samples were taken within key locations of the hydrological network in the catchment. X-Ray Spectrometry was used to determine the geochemical composition of suspended sediments and soil. A multi-step statistical procedure with a Bayesian mixing model was used to determine the contribution of each geologic group and sub-catchment to the suspended sediments in the river. Erosion hotspots were classified based on the underlying land use and their contribution to the suspended sediments. The resulting erosion hotspot map shows that about 70.9% of the Sebeya Catchment area contributes at least 50% of sediment load in the river and currently experiences unsustainable land use and land cover. The erosion hotspots identified and culpable factors should be used to guide best land use practices, prioritizing the areas with high contribution to the river sedimentation in Sebeya Catchment.


Assuntos
Ecossistema , Sedimentos Geológicos , Teorema de Bayes , Monitoramento Ambiental , Lagos , Rios , Ruanda
13.
J Environ Manage ; 231: 146-154, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30340134

RESUMO

Metalled roads have been shown to act as a major pathway for land-to-river sediment transfer, but there currently exists limited research into mitigation solutions to tackle this pollution source. The aim of this study was to assess the effectiveness of three roadside constructed wetlands, installed in September 2016, at reducing sediment enrichment in a tributary of the River Wensum, UK. Two wetland designs were trialled (linear and 'U-shaped'), both of which act as settling ponds to encourage entrained sediment to fall out of suspension and allow cleaner water to discharge into the river. Wetland efficiency was monitored through automated, high-resolution (30 min) turbidity probes installed upstream and downstream of the wetlands, providing a near-continuous record of river turbidity before (October 2011-August 2016) and after (November 2016-February 2018) installation. This was supplemented by lower resolution monitoring of the wetland inflows and outflows, as well as an assessment of sediment and nutrient accumulation rates within the linear wetland. Results revealed median river sediment concentrations decreased up to 14% after wetland construction and sediment load decreased by up to 82%, although this was largely driven by low river discharge post-installation. Median sediment concentrations discharging from the linear wetland (7.2 mg L-1) were higher than the U-shaped wetland (3.9 mg L-1), confirming that a longer flow pathway through wetlands can improve sediment retention efficiency. After 12 months of operation, the linear wetland had retained 7253 kg (305 kg ha-1 y-1) of sediment, 11.6 kg (0.5 kg ha-1 y-1) of total phosphorus, 29.7 kg (1.3 kg ha-1 y-1) of total nitrogen and 400 kg (17 kg ha-1 y-1) of organic carbon. This translates into mitigated pollutant damage costs of £392 for sediment, £148 for phosphorus and £13 for nitrogen, thus giving a combined total mitigated damage cost of £553 y-1. With the linear wetland costing £3411 to install and £145-182 y-1 to maintain, this roadside constructed wetland has an estimated payback time of 8 years, making it a cost-effective pollution mitigation measure for tackling sediment-enriched road runoff that could be widely adopted at the catchment-scale.


Assuntos
Rios , Áreas Alagadas , Carbono , Nitrogênio , Fósforo
14.
J Environ Manage ; 194: 16-26, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27160761

RESUMO

The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos
15.
J Environ Manage ; 194: 63-72, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742155

RESUMO

In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137Cs, 40K, 238U, 226Ra, 232Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies.


Assuntos
Rios , Solo , Teorema de Bayes , Radioisótopos de Césio , Sedimentos Geológicos
16.
J Environ Manage ; 185: 60-69, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28029480

RESUMO

Many streams in the Piedmont region of the southeastern United States transport a disproportionately large amount of suspended sediment in response to moderately increased streamflows. Transport and deposition of excess sediment affect the stability of the channel and the health of the biological community; therefore, identifying the main source(s) of sediment and assessing the relationships between source, transport, and streamflow are critical to aquatic life and habitat management, dynamic equilibrium preservation, and development of feasible mitigation scenarios. The objectives of this study were to: (1) predict the annual suspended sediment yield and (2) identify significant contributing upland sources of sediment in the Lawsons Fork Creek basin, a 217 km2 mixed-use watershed in the South Carolina Piedmont. A regularly monitored cross-section located in the downstream reach was equipped with a passive sediment sampler, gage-height recorder, and sediment tiles. Streamflow and sediment concentration were measured over a 24-month period under variable hydrologic regimes. Results indicated that the average annual sediment yield (168 t/km2/yr) is significantly higher than yields documented in Piedmont watersheds of comparable size. To identify and prioritize sources of sediment contribution, stable isotopes of nitrogen (δ15N) and carbon (δ13C) were used as tracers. Source material was compared with suspended sediment near the watershed outlet (target material) and SIAR, a Bayesian Inference model, was used to estimate source apportionment. Results of this source study indicate that approximately 60% of the total sediment load in the water column during high flow events is derived from stream bank erosion. Findings are consistent with observed unstable stream bank conditions in the watershed. This study supports the use of a dual-isotopic fingerprinting approach in tandem with traditional sediment monitoring as a cost-effective method to identify and target sediment sources in a mixed-use watershed.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Teorema de Bayes , Rios , South Carolina , Sudeste dos Estados Unidos
17.
J Environ Manage ; 194: 42-53, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497674

RESUMO

Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km2, Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 µm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications.


Assuntos
Sedimentos Geológicos , Rios , Agricultura , Análise Discriminante , Modelos Teóricos
18.
J Environ Manage ; 183(Pt 3): 742-753, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647133

RESUMO

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments. Samples were taken from the main identified sources: cultivated (n = 28), forest (n = 46), and subsoils (n = 25). Deposited particulate matter (n = 82) was sampled during four fieldwork campaigns from November 2012 to November 2014. A distribution modelling approach quantified relative source contributions with multiple combinations of element parameters (carbon only, nitrogen only, and four parameters) for two particle size fractions (<63 µm and <2 mm). Although there was significant particle size enrichment for the particulate matter parameters, these differences only resulted in a 6% (SD 3%) mean difference in relative source contributions. Further, the three different modelling approaches only resulted in a 4% (SD 3%) difference between relative source contributions. For each particulate matter sample, six models (i.e. <63 µm and <2 mm from the three modelling approaches) were used to incorporate a broader definition of potential uncertainty into model results. Forest sources were modelled to contribute 17% (SD 10%) of particulate matter indicating they present a long term potential source of radiocesium contaminated material in fallout impacted catchments. Subsoils contributed 45% (SD 26%) of particulate matter and cultivated sources contributed 38% (SD 19%). The reservoir of radiocesium in forested landscapes in the Fukushima region represents a potential long-term source of particulate contaminated matter that will require diligent management for the foreseeable future.


Assuntos
Radioisótopos de Césio/análise , Florestas , Material Particulado/análise , Monitoramento Ambiental/métodos , Acidente Nuclear de Fukushima , Sedimentos Geológicos/análise , Japão , Modelos Teóricos , Isótopos de Nitrogênio/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise
19.
J Environ Manage ; 165: 253-262, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26448272

RESUMO

The widespread adoption of sediment fingerprinting methodologies for the purpose of catchment management has been restricted by the high cost of tracer analysis as well as the potential for significant uncertainties to be present in results. Sediment colour has shown potential to be an inexpensive tracer able to discriminate between sediment sources. However, at present colour has not been demonstrated to be conservative during sediment erosion and transport. Sediment particle size and organic matter have been shown to strongly affect sediment colour, introducing significant uncertainties associated with its use. This study aimed to assess the suitability of colour as a tracer when it is measured using a commercially available colour scanner. The use of hydrogen peroxide (H2O2) to decompose sediment-associated organic matter was assessed as a means of minimising uncertainty. The impact of particle size on the accurate use of colour signatures as a tracer was also assessed. It was concluded that colour performed comparably to mineral magnetic signatures and showed good potential for use as a tracer. The use of H2O2 pre-treatment and limitation of the analysis to either the <32 µm or the >32 µm fraction of the samples were indicated to be important methods to limit uncertainties associated with organic matter and particle size. The methods used were considerably more time and cost effective than the measurement of most conventional tracers.


Assuntos
Cor , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Peróxido de Hidrogênio , Tamanho da Partícula , África do Sul , Incerteza
20.
Sci Total Environ ; 945: 173959, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879038

RESUMO

Quantifying the source contributions of sediments in large fluvial systems with active wind erosion problems has crucial implications for understanding morphological evolution and ecological progression in the Earth system. Much effort have been focused on characterizing sediments of the Yellow River, but quantitation of the sediment source proportions at the basin-wide scale is lacking. To this end, the research aims to quantitatively elucidate the potential source contributions of sediments in the Yellow River based on geochemical characteristics and sediment fingerprinting technique, in order to identify sedimentary mixing effect and propose sustainable development strategies. In total, samples of four source groups (n = 107) and target floodplain sediments (n = 61) were collected and tested for elemental composition, grain size, magnetic susceptibility, and quartz grain microtextures. The results indicated that the optimal tracer combination was determined as P, Zn, and Ca. The average contributions of the "Tibetan Plateau", "Sandy deserts-Loess Plateau", "Loess Plateau", and "Loess Plateau-Qinling Mountains" source groups to the target sediments were 23.0 %, 21.5 %, 31.6 %, and 23.9 %, respectively. The accuracy of source apportionments was supported by the goodness of fit (GOF) and virtual mixtures tests. Meanwhile, large amounts of debris from surrounding mountains was transported to the Loess Plateau through fluvial processes and ultimately mixed with aeolian deposits, leading to sedimentary mixing effect. To maintain water balance and minimize erosion risk, the drought-resistant perennial planting and moderate grazing were recommended. The findings are instrumental in promoting soil and water conservation and disclosing fluvial and aeolian interaction on a global scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA