Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(11): 8317-8336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597084

RESUMO

The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.


Assuntos
Arsênio , Crassulaceae , Sedum , Poluentes do Solo , Arsênio/toxicidade , Sedum/metabolismo , Sedum/microbiologia , Crassulaceae/metabolismo , Fosfatos , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Cádmio
2.
Mol Genet Genomics ; 294(6): 1441-1453, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31214764

RESUMO

Soil salinization is one major constraint to plant geographical distribution, yield, and quality, and as an ideal plant for the "greening" of flat-roofed buildings, Sedum lineare Thunb. has strong tolerance against a variety of environmental adversities including salinity with the underlying mechanism still remaining unknown. In this study, we performed de novo transcriptome sequencing on leaf and root samples of NaCl-treated S. lineare Thunb. and identified 584 differentially expressed genes (DEGs), which were further annotated by gene function classification and pathway assignments using the public data repositories. In addition to the increased gene expression level verified by qRT-PCR, the elevated activities of the corresponding enzymes were also demonstrated for peroxidase (POD), glutathione peroxidases (GPX), and cysteine synthase (CSase) in the NaCl-treated roots. Furthermore, two highly inducible genes without known functions related to salt tolerance were selected to be overexpressed and tested for their effects on salt tolerance in the model plant, Arabidopsis thaliana. Upon 150 mM NaCl treatment, 35S:SlCXE but not 35S:SlCYP72A transgenic Arabidopsis seedlings exhibited improved salt resistance as shown by the increased seed germination rates and longer primary roots of transgenic seedlings when compared to wild-type plants. Taken together, this work laid a foundation for a better understanding of the salt adaptation mechanism of S. lineare Thunb. and genes identified could serve as useful resources for the development of more salt-tolerant varieties of other species through genetic engineering.


Assuntos
Estresse Salino/genética , Sedum/genética , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética , Sedum/anatomia & histologia , Sedum/enzimologia , Análise de Sequência de RNA
3.
Sci Total Environ ; 805: 150344, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818784

RESUMO

Green roofs (GR) can be used as a nature-based solution to tackle eco-environmental problems caused by climate change and rapid urbanization. The substrate in the GRs is the growing medium for vegetation, and its properties directly affect the ecosystem services of GRs. To investigate the characteristic changes of an exposed substrate after the removal of vegetation, a one-year field experiment was conducted. Substrate properties were comprehensively compared for areas in GR that were planted with Sedum lineare and those with bare substrate. Results show that vegetation cover not only prevented substrate loss by 5.14% (p < 0.05) but also protected the chemical, microbial, and physical properties of the substrate. Moreover, the structure of the substrate changed, as evidenced by a significant increase in fine sand (p < 0.05). The results highlight that attention should be paid to maintaining vegetation cover during GR management. In addition, extensive GRs may not be suitable for fallowing. Once a GR has been established, it needs regular maintenance. Otherwise, the ecological and economic benefits of the GR may be reduced. The findings of the present study can be used to determine the life-cycle costs. Further research should focus on differences in the substrate loss rates, runoff, and temperatures of the substrates under exposure and vegetation cover. The microbial changes after revegetation should also be studied to clarify the role of vegetation in GR ecosystems. The present study provides a reference for improving GR management and ensuring their sustainability.


Assuntos
Ecossistema , Sedum , Conservação dos Recursos Naturais , Nutrientes , Plantas , Temperatura
4.
Mitochondrial DNA B Resour ; 6(12): 3338-3339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805513

RESUMO

The complete chloroplast genome of Sedum lineare Thunberg, a plant widely occurring in most southern provinces of China, is assembled and characterized using Illumina sequencing data in this study. The genome is 149,257 bp in length, containing a large single-copy (LSC) region of 80,963 bp, a short single-copy (SSC) region of 16,648 bp, and two inverted repeat (IR) regions of 25,823 bp. It contains 130 genes, with 85 protein-coding genes, 8 rRNA genes and 37 tRNA genes. Moreover, the phylogenetic tree shows that S. lineare is closely related to Sedum japonicum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA