Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Poult Sci ; 94(5): 965-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25717085

RESUMO

The aim of this study was to compare the effect of DL-selenomethionine (SM) with 2 routinely used Se sources, sodium selenite (SS) and seleno-yeast (SY), on relative bioavailability based on antioxidant activity and tissue Se content. Six hundred thirty 131-day-old brown laying hens were randomly assigned to 7 treatments for 168 d (24 wks) with 6 replicates of 15 hens per replicate. The SS and SY animals were supplemented a cornmeal and soybean diet that supplied a total Se 0.3 mg/kg whereas SM was added at 4 different levels to the total Se at 0.1, 0.3, 0.5 and 0.7 mg/kg. All hens fed the Se-supplemented diet showed higher glutathione peroxidase (GSH-Px) activity (P < 0.01), higher superoxide dismutase (SOD) activity (P < 0.05), lower malondialdehyde (MDA) content (P < 0.05) in plasma, and greater Se contents in egg yolks, albumen, leg muscle, breast muscle, liver, and plasma compared with those fed the control diet (P < 0.01). The organic sources (SY and SM) exhibited a greater ability to increase the GSH-Px activity (P < 0.01) and Se content in albumen (P < 0.01), leg, and breast muscles (P = 0.0099 and P = 0.0014, respectively) than the SS that was added at 0.3 mg Se/kg. The higher SM added levels increased the GSH-Px activity until the dose of 0.5mg Se/kg (P < 0.01).The greater Se concentrations in albumen, muscle and liver appeared in the higher SM-added level, as well as above the dose of 0.1 mg Se/kg (P < 0.01). In addition, hens fed the diet with SM accumulated more Se in albumen, leg, and breast muscle than those fed diets with SY (P < 0.05). These results confirmed the higher ability of organic Se sources to increase the antioxidant activity and Se deposition in egg albumen, leg, and breast muscles compared with SS, and demonstrated a significantly better efficiency of SM compared with SY for albumen and muscle Se enrichment.


Assuntos
Galinhas/metabolismo , Selênio/farmacologia , Selenometionina/farmacologia , Selenito de Sódio/farmacologia , Albuminas/química , Animais , Gema de Ovo/química , Feminino , Glutationa Peroxidase/metabolismo , Fígado/química , Fígado/metabolismo , Malondialdeído/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Selênio/sangue , Selênio/química , Selênio/metabolismo , Selenometionina/administração & dosagem , Selenito de Sódio/administração & dosagem , Superóxido Dismutase/metabolismo , Leveduras/química
2.
J Anim Sci Technol ; 65(6): 1226-1241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38616877

RESUMO

Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.

3.
Animals (Basel) ; 13(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136867

RESUMO

Selenium (Se) yeast, a bioavailable form of selenium, exhibits enhanced bioavailability due to its unique organic matrix and superior metabolic availability compared to the inorganic selenium sources. This study aims to evaluate the effects of Se yeast on the growth performance, slaughter performance, antioxidant capacity, and Se deposition in broiler chickens. A total of 264 1-day-old male AA broilers (38.7 ± 0.1 g) were randomly assigned to four treatment groups, with six replicates of 11 chickens per replicate. The broilers were fed a basal diet or a diet supplemented with 0.1, 0.2, and 0.4 mg/kg Se yeast. The experiment lasted for 42 days. Although the results showed that Se yeast did not significantly improve the growth performance of broilers, it did significantly decrease the abdominal fat ratio. Additionally, supplementation of Se yeast significantly improved the antioxidant capacity of broilers. The quadratic regression models were used to simulate the relationship between Se content in the feed and Se deposition in broiler tissues. The regression equations were as follows: pectoral muscle, Y = 2.628X - 0.340X2 - 0.592 (R2 = 0.927); leg muscle, Y = 2.317X - 0.272X2 - 0.490 (R2 = 0.937); liver, Y = 3.357X - 0.453X2 - 0.493 (R2 = 0.961); kidney, Y = 4.084X - 0.649X2 + 0.792 (R2 = 0.932). Based on these findings, the Se deposition in broiler tissues can be predicted by the Se content of the additive, which is of great significance for the precise production of Se-enriched functional chicken products.

4.
Biol Trace Elem Res ; 200(5): 2247-2258, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34476677

RESUMO

Selenium-enriched polysaccharide (SeEPS) was prepared by reducing Se(IV) to elemental selenium and organic selenium in polysaccharide medium by the obtained Enterobacter cloacae strain Z0206 under aerobic conditions. In the present study, we focused on investigating the role of short-term supplementation of SeEPS at supernutritional doses in the regulation of growth performance, liver damage, antioxidant capacity, and selenium (Se) accumulation in C57 mice. Thirty-two C57 mice were randomly divided into four groups: the control group was gavaged with equal volume of phosphate-buffered saline, while the sodium selenite (Na2SeO3), selenomethionine (SeMet), and SeEPS groups were gavaged with 0.5 mg Se/kg BW of Na2SeO3, SeMet, and selenium-enriched polysaccharide (n = 8), respectively. We examined liver injury indicators, antioxidant capacity in the serum and liver, selenium deposition at different sites, selenoprotein levels, and selenocysteine-synthesizing and degradation-associated gene expression in mouse livers. SeEPS supplementation dramatically increased average daily weight gain but reduced the feed-to-gain ratio (F/G) of mice (P < 0.05). Compared to Na2SeO3 and SeMet supplementation, SeEPS supplementation at supernutritional doses did not cause the liver damage. SeEPS supplementation also markedly enhanced total antioxidant capacity (T-AOC), catalase (CAT), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD) activities but reduced malondialdehyde (MDA) levels in the liver and serum (P < 0.05), while significantly increasing selenocysteine-synthesizing and degradation-related gene (SEPHS2, SEPSECS, Secisbp, Scly) expression at the mRNA level (P < 0.05), thus upregulating the mRNA levels of selenoproteins (SELENOP, SELENOK) (P < 0.05). We suggest that SeEPS could be a potential replacement for inorganic selenium to improve animals' growth performance, promote antioxidant capacity, and regulate selenium deposition.


Assuntos
Selênio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Suplementos Nutricionais , Camundongos , Polissacarídeos/farmacologia , RNA Mensageiro/genética , Selênio/farmacologia , Selenocisteína , Selenometionina , Selenoproteínas/genética
5.
Poult Sci ; 100(2): 1132-1141, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518072

RESUMO

This experiment aims to study the effects of dietary selenium (Se) sources on the production performance, reproductive performance, and maternal effect of breeder laying hens. A total of 2,112 Hyline brown breeder laying hens of 42 wk of age were selected and randomly divided into 3 groups, with 8 repeats in each group and 88 chickens per repeat. The sources of dietary Se were sodium selenite (SS, added at 0.3 mg/kg), L-selenomethionine (L-SM, added at 0.2 mg/kg), and combination of SS and L-SM (SS 0.15 mg/kg + L-SM 0.15 mg/kg). The pretest period was 7 d, and the breeding period was 49 d. Compared with 0.3 mg/kg SS, the addition of 0.2 mg/kg L-SM in the diet significantly increased the hatchability (P < 0.05) and the Se content (P < 0.05) in egg yolk and chicken embryo tissues and improved the activity of yolk glutathione peroxidase (GSH-px) effectively (P < 0.05). Treatment with 0.2 mg/kg L-SM also reduced the content of yolk malondialdehyde (P < 0.05) and significantly improved the antioxidant performance of 1-day-old chicks, as manifested by increased activity of antioxidant enzymes (GSH-px, total antioxidant capacity and the ability to inhibit hydroxyl radicals) in serum, pectoral, heart, and liver (P < 0.05). This treatment decreased the malondialdehyde content (P < 0.05) and increased the expression of liver glutathione peroxidase 4 and deiodinase 1 mRNA (P < 0.05). Adding L-SM to the diets of chickens increased the hatchability of breeder eggs as well as the amount of Se deposited and antioxidant enzyme activity in breeder eggs and embryos. Compared with SS, L-SM was more effectively transferred from the mother to the embryo and offspring, showing efficient maternal nutrition. For breeder diets, the combination of organic and inorganic Se (0.15 mg/kg SS + 0.15 mg/kg L-SM) is an effective nutrient supplementation technology program for effectively improving the breeding performance of breeders and the antioxidant performance and health level of offspring chicks.


Assuntos
Ração Animal , Galinhas/fisiologia , Reprodução/efeitos dos fármacos , Selênio , Ração Animal/análise , Animais , Embrião de Galinha , Dieta/veterinária , Suplementos Nutricionais , Ovos/normas , Feminino , Distribuição Aleatória , Selênio/administração & dosagem , Selênio/classificação , Selenometionina/administração & dosagem , Selenito de Sódio/administração & dosagem
6.
Front Vet Sci ; 8: 688915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395572

RESUMO

Selenium (Se), an essential trace element for human and animal health, is covalently incorporated into amino acids, acts as a cofactor for antioxidant enzymes, and is involved in the maintenance of the immune system. The main goal of this investigation was to show the effect of Se supplementation, at levels slightly higher than the recommended values, combined with natural zeolite clinoptilolite on Se deposition in tissues (muscle and liver) and on the immune and antioxidative status of supplemented growing pigs. The experiment was carried out during a 98 d period on 60 pigs. Pigs were fed a standard feed mixture based on corn and soybean and were divided into four groups, according to the level of dietary selenium supplementation as follows: C-0.3 mg/kg DM organic Se, E1-0.5 mg/kg DM sodium selenite, E2-0.5 mg/kg DM organic selenium; E3-0.5 mg/kg DM organic Se+0.2% zeolite. Higher (P < 0.05) selenium concentrations were determined in the muscle and liver in growing pigs fed with higher organic Se in combination with zeolite compared to the lower organic Se concentration. Addition of organic Se increased (P < 0.05) Se deposition in muscle and liver compared to the equal amount of inorganic Se (E2 vs. E1). Higher organic Se in combination with natural zeolite addition increases (P < 0.05) proportion of pigs' cluster of differentiation (CD)45+ compared to the same amount of inorganic Se and lower organic Se addition. The proportion of CD45+ and CD4+ lymphocytes was higher (P < 0.05) in E3 group compared to the other groups. Higher (P < 0.05) proportion of CD21+ lymphocytes were measured in the E2 and E3 groups compared with the other groups. The highest (P < 0.01) activity of glutathione peroxidase (GSH-Px) in pig erythrocytes was observed in the E3 group, while higher (P < 0.05) activity of glutathione reductase (GR) was in all experimental groups related to the control one. A dietary addition of 0.5 mg/kg DM of organic Se in combination with zeolite (0.2% DM) has increased (P < 0.05) Se deposition in liver, muscle, and blood, compared to the dietary addition of 0.3 mg/kg DM of the organic Se.

7.
Biol Trace Elem Res ; 199(6): 2295-2302, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32845448

RESUMO

The objective of this study was to compare the effects of nanoselenium (NS) and selenium yeast (SY) on the performance, egg selenium (Se) concentration, and anti-oxidative capacity of hens. A total of 216 Brown Hy-line hens (29-week old) were randomly allocated into three treatments (6 replicate/treatment, 12 hens/replicate). The pre-trial period lasted 7 days, and the experimental period lasted 35 days. Dietary treatments included corn-soybean meal basal diet (containing 0.16 µg Se/g, as control group), and basal diet supplemented with 0.3 mg Se/kg diet (Se was from NS or SY), called as SY group or NS group, respectively. At the end of the experiment, one hen per replicate from each treatment was slaughtered. Liver, spleen, and kidney tissues were sampled for the determination of Se concentrations. The results showed that NS or SY supplement significantly improved feed conversion ratio (P < 0.05), soft broken egg rate (P < 0.05), and the serum T-AOC value (P < 0.05) when compared with control group. Remarkably, the deposition of Se increased significantly (P < 0.05) and equivalently in egg, liver, and kidney of hens supplemented with both NS and SY. Interestingly, SY supplement also enhanced the serum CAT and SOD activities (P < 0.05), NS but not SY significantly reduced serum MDA (P < 0.05), whereas RT-PCR results did not show significant differences in the mRNA levels of antioxidant genes among three groups (P > 0.05). Taken together, dietary supplemented with SY or NS improved the Se deposition in eggs, liver and kidney of laying hens, increased antioxidant activity, and NS supplement had greater Se deposition in the kidney tissue than SY supplement. SY or NS supplement could be considered to be applied for Se-enriched egg production.


Assuntos
Selênio , Fermento Seco , Ração Animal/análise , Animais , Galinhas , Dieta , Suplementos Nutricionais , Ovos , Feminino , Saccharomyces cerevisiae , Selênio/farmacologia
8.
Poult Sci ; 99(11): 6267-6277, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142545

RESUMO

The aim of this study was to compare the dynamic changes of egg selenium (Se) deposition and deposition efficiency and to evaluate the efficacy of selenium-enriched yeast (SY) in laying hens over the 84 d feeding period after SY supplementation. A total of one thousand one hundred fifty-two 30-wk-old, Hy-Line Brown hens were randomly assigned to 1 of 6 groups (192 laying hens per group) with 6 replicates of 32 birds each, fed a basal diet (without Se supplementation), basal diet with 0.3 mg/kg of Se from sodium selenite (SS) or basal diets with 0.1, 0.2, 0.3, or 0.4 mg/kg of Se from SY, respectively. The results showed that the Se concentrations in the eggs and breasts from hens fed a SY-supplemented diet were significantly higher than those from hens fed a SS-supplemented diet or a basal diet (P < 0.001). There was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed a SY-supplemented diet and dietary Se supplementation on days 28, 56, and 84 (r2 = 0.931, 0.932, 0.976, P < 0.001; r2 = 0.946, 0.935, 0.976, P < 0.001), respectively. The Se deposition efficiency in whole eggs from hens fed a basal or SY-supplemented diet weresignificantly higher than those in eggs from hens fed a SS-supplemented diet on days 28, 56, and 84 (P < 0.001), respectively. In addition, there was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed SY-supplemented diet (r2 = 0.655, 0.779, 0.874, 0.781, P < 0.001; r2 = 0.666, 0.863, 0.944, 0.781, P < 0.001) or SS-supplemented diet (r2 = 0.363, P = 0.002; r2 = 0.440, P = 0.002) and number of feeding days. In conclusion, the organic Se from SY has higher bioavailability and deposition efficiency of Se in whole eggs as compared with inorganic Se from SS. The Se concentrations and Se deposition efficiency in the eggs increased from hens fed a SS- or SY-supplemented diet but decreased from hens fed a basal diet with the extension of the experimental duration. The results indicate that the dietary Se supplementation from SY should be limited to a maximum of 0.1 mg Se/kg complete feed when the eggs and meat produced from hens fed a SY-supplemented diet are used as food for humans directly, whereas up to 0.4 mg/kg organic Se from SY can be used to supplement the diets for laying hens when the products are used as raw materials for producing Se-enriched food.


Assuntos
Galinhas , Suplementos Nutricionais , Selênio , Fermento Seco , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Dieta/veterinária , Ovos/análise , Ovos/normas , Feminino , Crescimento e Desenvolvimento/fisiologia , Distribuição Aleatória , Selênio/metabolismo , Aumento de Peso/fisiologia , Fermento Seco/química
9.
Poult Sci ; 98(5): 2150-2159, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590669

RESUMO

The aim of the present study was to verify the effect of selenomethionine (SM) supplementation in the diet of chickens on performance, carcass yield, apparent retention, meat quality, and selenium (Se) deposition in tissues. In the first experiment, 2,100 day-old male chicks from the Hubbard Flex strain were randomly distributed in 84 plots with 12 treatments and 7 replicates. The treatments consisted of SM (1,600 ppm) supplementation at levels of 0.3 and 0.5 ppm in substitution of sodium selenite (45.7%) in different preslaughter phases. In the second experiment, 224 day-old male chicks from Hubbard Flex strain were randomly distributed in 28 metabolic cages. Poultry were distributed in 4 treatments with 7 replicates (8 poultry) in the experimental period from 1 to 21 D and experimental plot with 4 poultry aged from 22 to 42 D. Treatments consisted of 4 SM addition levels (0.3, 0.4, 0.5, and 0.6 ppm). In both experiments, the performance (1 to 21 and 1 to 42 D), carcass yield and cuts, apparent retention of Se (33 to 35 D), physical and chemical characteristics of the breast meat were evaluated: objective color, drip loss (DL), cooking loss (CL), pH, peroxide value, and Se deposition in tissues. In experiment I, it was found that SM at 0.3 ppm improved the weight gain and feed conversion of 1 to 42 D. The use of SM at 0.5 ppm resulted in lower DL and CL. The highest Se deposition in muscles was obtained using the SM at 0.5 ppm of 1 to 42 D. Using the SM at 0.5 ppm, only in the last week there was a deposition similar to the use of SM at 0.3 ppm of 1 to 42 D. In experiment II, it can be observed that increased SM levels provided lower DL and lower pH values. Se deposition in tissues of broiler chickens increased linearly at the SM level from 0.3 to 0.6 ppm.


Assuntos
Galinhas/fisiologia , Carne/análise , Selênio/metabolismo , Selenometionina/metabolismo , Fatores Etários , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Masculino , Distribuição Aleatória , Selenometionina/administração & dosagem , Distribuição Tecidual
10.
Poult Sci ; 98(6): 2522-2530, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715535

RESUMO

Organic selenium (Se) supplementation from Se-enriched yeast (SY) has been advocated and approved for use in animal feeds by some nutritionists and researchers rather than inorganic Se from sodium selenite. However, there is little available safety data of SY in laying hens. A subchronic study was conducted to determine if high-dose SY affects the safety of hens. A total of 768, 30-wk-old, Hy-Line Brown hens were randomly assigned to 1 of 4 groups (192 laying hens per group) with 6 replicates of 32 birds each. After a 2-wk acclimation period, the birds were fed diets supplemented with 0, 0.3, 1.5, or 3.0 mg/kg Se from SY for 12 wk. Throughout the study period, clinical observations and laying performance were measured. The hematological and chemical parameters of blood samples and the Se concentration in eggs were examined after SY supplementation for 4, 8, and 12 wk, and the egg quality was measured after 12 wk. At the end of the study, full post-mortem examinations were conducted: breast Se concentrations were measured, visceral, and reproductive organs were weighed, and specified tissues were collected for subsequent histological examinations. Although the Se concentrations in the eggs and breast meat from hens fed 3.0 mg/kg of Se from SY were 1036.73% and 2127.93% higher (P < 0.001) than those from hens fed a basal diet after 12 wk, no treatment-related changes of toxicological significance were observed. Therefore, up to 3 mg/kg organic Se from SY can be used to supplement the diets for laying hens without adverse effects following 84-d administration.


Assuntos
Ração Animal/análise , Ovos/análise , Carne/análise , Compostos Organosselênicos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Feminino , Tamanho do Órgão , Compostos Organosselênicos/administração & dosagem , Selênio/análise , Leveduras/química
11.
Poult Sci ; 96(11): 3973-3980, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050423

RESUMO

This study compared the effects of sodium selenite and selenium yeast and their combination on laying performance, egg quality, antioxidant capacity, and selenium (Se) contents in tissues and eggs. Two-hundred-eighty-eight Jing Hong layers that were similar in laying rate (87.5 ± 0.38%) and body weight (1.70 ± 0.02 kg) were randomly distributed into 4 treatments for 11 wk (from 203 d old to 279 d old) with 9 replicates of 8 hens per replicate. The diets (corn-soybean meal diet) were supplemented with 0 [blank control (BC)], 0.3 mg/kg Se from sodium selenite (SS), 0.15 mg/kg Se from sodium selenite and 0.15 mg/kg Se from Se yeast (SS+SY), or 0.3 mg/kg Se from Se yeast (SY). Results showed that the laying rate of the SS+SY group increased significantly (P < 0.05) compared to the BC and SY groups. There were no differences (P > 0.05) in egg quality between the Se-supplemented diets and the BC diet. The serum glutathione peroxidase (GSH-Px) activity was increased (P < 0.01) in hens fed Se-supplemented diets compared to the BC diet. The liver superoxide dismutase (SOD) activity of the SY group was increased significantly (P < 0.05) compared to the BC group. Significant increase (P < 0.01) due to SY supplementation was noted in the serum vitamin E content compared to BC and SS. Layers fed Se-supplemented diets had higher (P < 0.01) contents of Se in the serum, liver, and kidney compared to the BC diet. Compared to BC, Se content in eggs was significantly increased (P < 0.05) by feeding supplementary Se. In conclusion, the effects of SS and Se yeast were approximately equal in promoting antioxidant capacity of laying hens, while Se yeast is easier to deposit into eggs and tissues. The diet with added equal amounts of the 2 sources of Se was more cost effective and affordable than a comparable amount of Se yeast to obtain the promising production performance and nearly similar Se deposition.


Assuntos
Antioxidantes/metabolismo , Galinhas/fisiologia , Compostos Organosselênicos/metabolismo , Óvulo/fisiologia , Selenito de Sódio/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Compostos Organosselênicos/administração & dosagem , Selenito de Sódio/administração & dosagem , Distribuição Tecidual , Leveduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA