Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Semin Cell Dev Biol ; 138: 15-27, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35760729

RESUMO

During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Animais , Ectoderma/metabolismo , Vertebrados , Organogênese
2.
Proc Natl Acad Sci U S A ; 119(25): e2119502119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696561

RESUMO

The darkness of the deep ocean limits the vision of diving predators, except when prey emit bioluminescence. It is hypothesized that deep-diving seals rely on highly developed whiskers to locate their prey. However, if and how seals use their whiskers while foraging in natural conditions remains unknown. We used animal-borne tags to show that free-ranging elephant seals use their whiskers for hydrodynamic prey sensing. Small, cheek-mounted video loggers documented seals actively protracting their whiskers in front of their mouths with rhythmic whisker movement, like terrestrial mammals exploring their environment. Seals focused their sensing effort at deep foraging depths, performing prolonged whisker protraction to detect, pursue, and capture prey. Feeding-event recorders with light sensors demonstrated that bioluminescence contributed to only about 20% of overall foraging success, confirming that whiskers play the primary role in sensing prey. Accordingly, visual prey detection complemented and enhanced prey capture. The whiskers' role highlights an evolutionary alternative to echolocation for adapting to the extreme dark of the deep ocean environment, revealing how sensory abilities shape foraging niche segregation in deep-diving mammals. Mammals typically have mobile facial whiskers, and our study reveals the significant function of whiskers in the natural foraging behavior of a marine predator. We demonstrate the importance of field-based sensory studies incorporating multimodality to better understand how multiple sensory systems are complementary in shaping the foraging success of predators.


Assuntos
Comportamento Alimentar , Comportamento Predatório , Focas Verdadeiras , Vibrissas , Animais , Hidrodinâmica , Focas Verdadeiras/fisiologia , Vibrissas/fisiologia
3.
BMC Biol ; 22(1): 173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148065

RESUMO

BACKGROUND: Sensory systems evolved intricate designs to accurately encode perplexing environments. However, this encoding task may become particularly challenging for animals harboring a small number of sensory neurons. Here, we studied how the compact resource-limited chemosensory system of Caenorhabditis elegans uniquely encodes a range of chemical stimuli. RESULTS: We find that each stimulus is encoded using a small and unique subset of neurons, where only a portion of the encoding neurons sense the stimulus directly, and the rest are recruited via inter-neuronal communication. Furthermore, while most neurons show stereotypical response dynamics, some neurons exhibit versatile dynamics that are either stimulus specific or network-activity dependent. Notably, it is the collective dynamics of all responding neurons which provides valuable information that ultimately enhances stimulus identification, particularly when required to discriminate between closely related stimuli. CONCLUSIONS: Together, these findings demonstrate how a compact and resource-limited chemosensory system can efficiently encode and discriminate a diverse range of chemical stimuli.


Assuntos
Caenorhabditis elegans , Células Quimiorreceptoras , Animais , Caenorhabditis elegans/fisiologia , Células Quimiorreceptoras/fisiologia , Células Receptoras Sensoriais/fisiologia
4.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323461

RESUMO

Natural variation in environmental turbidity correlates with variation in the visual sensory system of many fishes, suggesting that turbidity may act as a strong selective agent on visual systems. Since many aquatic systems experience increased turbidity due to anthropogenic perturbations, it is important to understand the degree to which fish can respond to rapid shifts in their visual environment, and whether such responses can occur within the lifetime of an individual. We examined whether developmental exposure to turbidity (clear, <5 NTU; turbid, ∼9 NTU) influenced the size of morphological structures associated with vision in the African blue-lip cichlid Pseudocrenilabrus multicolor. Parental fish were collected from two sites (clear swamp, turbid river) in western Uganda. F1 broods from each population were split and reared under clear and turbid rearing treatments until maturity. We measured morphological traits associated with the visual sensory system (eye diameter, pupil diameter, axial length, brain mass, optic tectum volume) over the course of development. Age was significant in explaining variation in visual traits even when standardized for body size, suggesting an ontogenetic shift in the relative size of eyes and brains. When age groups were analyzed separately, young fish reared in turbid water grew larger eyes than fish reared in clear conditions. Population was important in the older age category, with swamp-origin fish having relatively larger eyes and optic lobes relative to river-origin fish. Plastic responses during development may be important for coping with a more variable visual environment associated with anthropogenically induced turbidity.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Olho , Encéfalo/anatomia & histologia , Água Doce/química , Visão Ocular
5.
Diabetes Obes Metab ; 26(4): 1430-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229447

RESUMO

Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, ß3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.


Assuntos
Eletroacupuntura , Camundongos , Animais , Sistema Nervoso Simpático/fisiologia , Obesidade/terapia , Obesidade/metabolismo , Tecido Adiposo Branco , Tecido Adiposo Marrom/metabolismo , Termogênese , Órgãos dos Sentidos
6.
Audiol Neurootol ; 29(1): 30-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37557094

RESUMO

Comprehensive insights into balance control of individuals with hearing impairment are compared with individuals with hearing. Primary sources were obtained from 7 databases including PubMed, LILACS, SCOPUS, CINAHL, PEDro, CENTRAL, and Web of Science. The search period extended from inception until January 5, 2022. The systematic review included 24 studies and 27 trials, with a total of 2,148 participants. The meta-analysis showed a significant difference in the average balance control between individuals with hearing impairment and individuals with hearing, with individuals with hearing having a favorable advantage (p = 0.001). Additionally, average balance control was found to be in favor of individuals with hearing (p = 0.001) when comparing individuals with hearing impairment who participated in sports. Finally, individuals with hearing impairment who participated in sports demonstrated a significantly higher average difference in balance control (p = 0.001) when compared to sedentary people with hearing impairment. Our meta-analysis results indicate a balance defect in individuals with hearing impairment compared to individuals with hearing. In addition, with increasing age, the balance in individuals with hearing impairment improved. Additionally, the dependence of individuals with hearing impairment on the visual and proprioception systems to maintain balance increased. Finally, there was more dependence on the proprioception than the visual system, while individuals with hearing had stronger average balance control than individuals with hearing impairment who participated in sports, when compared to sedentary people with hearing impairment.


Assuntos
Perda Auditiva , Equilíbrio Postural , Humanos
7.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597092

RESUMO

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Assuntos
Neuropeptídeos , Rhodnius , Triatoma , Animais , Rhodnius/genética , Rhodnius/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transcriptoma , Muda
8.
Adv Exp Med Biol ; 1454: 3-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008262

RESUMO

This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.


Assuntos
Interações Hospedeiro-Parasita , Trematódeos , Trematódeos/fisiologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Bactérias , Infecções por Trematódeos/parasitologia , Humanos
9.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123962

RESUMO

Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.


Assuntos
Biomimética , Eletrólitos , Redes Neurais de Computação , Transistores Eletrônicos , Biomimética/instrumentação , Eletrólitos/química , Humanos , Técnicas Biossensoriais/instrumentação , Robótica/instrumentação , Materiais Biomiméticos/química
10.
Angew Chem Int Ed Engl ; 63(1): e202313634, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783656

RESUMO

Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.

11.
Dev Biol ; 481: 1-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517003

RESUMO

Vertebrate organs are arranged in a stereotypic, species-specific position along the animal body plan. Substantial morphological variation exists between related species, especially so in the vastly diversified teleost clade. It is still unclear how tissues, organs and systems can accommodate such diverse scaffolds. Here, we use the distinctive arrangement of neuromasts in the posterior lateral line (pLL) system of medaka fish to address the tissue-interactions defining a pattern. We show that patterning in this peripheral nervous system is established by autonomous organ precursors independent of neuronal wiring. In addition, we target the keratin 15 gene to generate stuck-in-the-midline (siml) mutants, which display epithelial lesions and a disrupted pLL patterning. By using siml/wt chimeras, we determine that the aberrant siml pLL pattern depends on the mutant epithelium, since a wild type epithelium can rescue the siml phenotype. Inducing epithelial lesions by 2-photon laser ablation during pLL morphogenesis phenocopies siml genetic mutants and reveals that epithelial integrity defines the final position of the embryonic pLL neuromasts. Our results using the medaka pLL disentangle intrinsic from extrinsic properties during the establishment of a sensory system. We speculate that intrinsic programs guarantee proper organ morphogenesis, while instructive interactions from surrounding tissues facilitates the accommodation of sensory organs to the diverse body plans found among teleosts.


Assuntos
Padronização Corporal , Sistema da Linha Lateral/embriologia , Oryzias/embriologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Queratina-15/genética , Queratina-15/metabolismo , Mutação , Oryzias/genética
12.
Eur J Neurosci ; 57(3): 527-546, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504470

RESUMO

Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Ratos , Comportamento Animal , Modelos Animais de Doenças , Resveratrol/farmacologia , Roedores , Comportamento Social , Córtex Somatossensorial , Transmissão Sináptica , Ácido Valproico/farmacologia
13.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272538

RESUMO

Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish. A strong candidate is the mechanosensory lateral line, a hair cell-based sensory system that detects hydrodynamic information from sources such as water currents, predators, prey and surface waves. However, a role for the lateral line in mediating initial inflation of the swim bladder has not been reported. To explore the connection between the lateral line and surfacing, we used a genetic mutant (lhfpl5b-/-) that renders the zebrafish lateral line insensitive to mechanical stimuli. We observed that approximately half of these lateral line mutants over-inflate their swim bladders during initial inflation and become positively buoyant. Thus, we hypothesized that larval zebrafish use their lateral line to moderate interactions with the air-water interface during surfacing to regulate swim bladder inflation. To test the hypothesis that lateral line defects are responsible for swim bladder over-inflation, we showed that exogenous air is required for the hyperinflation phenotype and transgenic rescue of hair cell function restores normal inflation. We also found that chemical ablation of anterior lateral line hair cells in wild-type larvae causes hyperinflation. Furthermore, we show that manipulation of lateral line sensory information results in abnormal inflation. Finally, we report spatial and temporal differences in the surfacing behavior between wild-type and lateral line mutant larvae. In summary, we propose a novel sensory basis for achieving neutral buoyancy where larval zebrafish use their lateral line to sense the air-water interface and regulate initial swim bladder inflation.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Larva/genética , Bexiga Urinária , Sensação
14.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009325

RESUMO

The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Tato , Órgão Elétrico
15.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112228

RESUMO

In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).

16.
Nano Lett ; 22(17): 7275-7283, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000976

RESUMO

Developing multifunctional artificial sensory systems is an important task for constructing future artificial neural networks. A system with multisignal output capability is highly required by the rising demand for high-throughput data processing in the Internet of Things (IoT) society. Here, a novel dual-output artificial tactile sensing (DOATS) system with parallel output of photoelectric signals was proposed. Because of the ionic-electronic coupling mechanism in light-emitting synaptic (LES) devices in the DOATS system, modulating electric current and light emission can coexist through ion accumulation and electron-hole recombination. As a result, the DOATS system can realize the simulation of human tactile information, and the recognition of 16 kinds of fabrics was demonstrated with an accuracy rate of 94.1%. A photoelectric hybrid artificial neural network was proposed, which achieved efficient and accurate multitask operation. The DOATS system proposed in this work is promising for implementing photoelectric hybrid neural network and promoting the development of interactive artificial intelligence.


Assuntos
Inteligência Artificial , Tecnologia Háptica , Eletrônica , Humanos , Redes Neurais de Computação , Tato
17.
Behav Res Methods ; 55(8): 4035-4047, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307624

RESUMO

Neuroscience research has provided evidence that semantic information is stored in a distributed brain network involved in sensorimotor and linguistic processing. More specifically, according to the embodied cognition accounts, the representation of concepts is deemed as grounded in our bodily states. For these reasons, normative measures of words should provide relevant information about the extent to which each word embeds perceptual and action properties. In the present study, we collected ratings for 959 Italian nouns and verbs from 398 volunteers, recruited via an online platform. The words were mostly taken from the Italian adaptation of the Affective Norms for English Words (ANEW). A pool of 145 verbs was added to the original set. All the words were rated on 11 sensorimotor dimensions: six perceptual modalities (vision, audition, taste, smell, touch, and interoception) and five effectors (hand-arm, foot-leg, torso, mouth, head). The new verbs were also rated on the ANEW dimensions. Results showed good reliability and consistency with previous studies. Relations between perceptual and motor dimensions are described and interpreted, along with relations between the sensorimotor and the affective dimensions. The currently developed dataset represents an important novelty, as it includes different word classes, i.e., both nouns and verbs, and integrates ratings of both sensorimotor and affective dimensions, along with other psycholinguistic parameters; all features only partially accomplished in previous studies.


Assuntos
Idioma , Semântica , Humanos , Reprodutibilidade dos Testes , Psicolinguística , Percepção Auditiva
18.
Pol Merkur Lekarski ; 51(5): 558-562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38069858

RESUMO

OBJECTIVE: Aim: To analyze the practical application of the sensory integration technique for individuals with autism spectrum disorder at a climbing section, and to investigate the impact of physical activity on improving their proprioceptive and vestibular systems. PATIENTS AND METHODS: Materials and Methods: The method of included participant observation at the climbing classes with constant recording the behavior (desirable and undesirable) was used. The sensory screening (developed by J. Ayres) was applied for recording and determining the sensory systems of the people with ASD before the start of training and again after a month. The scale of Sensory Integration and Praxis Tests (SIPT) was used for assessing certain aspects of participants' sensory processing or perception according to the goals set during the climbing classes. RESULTS: Results: The results of the research showed that the application of the sensory integration technique for individuals with ACD at a climbing section promoted the dynamics of changes in their sensory system during training considering the characteristics of their sensory system. The positive changes were observed in the way the people with ACD felt about their own bodies and their involvement in sports activities that in its turn made it possible to be active and develop their sensory system. It has been identified that while planning training for the people with ASD it is necessary to take into account sensory modulation (reading sensory signals) and apply exercises for stimulating sensory sensations that will improve the motor activity of persons with ASD, their social interaction, and safety, as well. CONCLUSION: Conclusions: During training at the climbing section sensory information processing of the individuals with ASD have the impact on their body control, hand-eye coordination, and hand sensitivity during training. The improvement of sensory information processing in its turn enables people with ASD to master climbing.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/diagnóstico , Cognição
19.
BMC Genomics ; 23(1): 448, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710351

RESUMO

BACKGROUND: Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid-base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. RESULTS: We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. CONCLUSION: F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment.


Assuntos
Bass , Transcriptoma , Animais , Bass/genética , Dióxido de Carbono/farmacologia , Homeostase , Concentração de Íons de Hidrogênio , Oceanos e Mares , Mucosa Olfatória , Água do Mar
20.
Development ; 146(20)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31575648

RESUMO

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA