Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135118

RESUMO

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas RGS , Arabidopsis/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
2.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366908

RESUMO

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Assuntos
Poro Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/química , Serina/metabolismo , Cicatrização , Fatores de Transcrição de p300-CBP/metabolismo
3.
J Biol Chem ; 300(1): 105515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042495

RESUMO

SDS22 and Inhibitor-3 (I3) are two ancient regulators of protein phosphatase 1 (PP1) that regulate multiple essential biological processes. Both SDS22 and I3 form stable dimeric complexes with PP1; however, and atypically for PP1 regulators, they also form a triple complex, where both proteins bind to PP1 simultaneously (SPI complex). Here we report the crystal structure of the SPI complex. While both regulators bind PP1 in conformations identical to those observed in their individual PP1 complexes, PP1 adopts the SDS22-bound conformation, which lacks its M1 metal. Unexpectedly, surface plasmon resonance (SPR) revealed that the affinity of I3 for the SDS22:PP1 complex is ∼10-fold lower than PP1 alone. We show that this change in binding affinity is solely due to the interaction of I3 with the PP1 active site, specifically PP1's M2 metal, demonstrating that SDS22 likely allows for PP1 M2 metal exchange and thus PP1 biogenesis.


Assuntos
Domínio Catalítico , Proteína Fosfatase 1 , Ubiquitina-Proteína Ligases , Ligação Proteica , Proteína Fosfatase 1/química , Humanos , Ubiquitina-Proteína Ligases/química , Microscopia Crioeletrônica , Metais/química
4.
Mol Microbiol ; 122(2): 152-164, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38167835

RESUMO

Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed "eukaryotic-like" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bactérias/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Biologia Computacional/métodos , Fosforilação , Processamento de Proteína Pós-Traducional
5.
Clin Infect Dis ; 78(4): 833-841, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823484

RESUMO

BACKGROUND: The gastrointestinal microbiota is an important line of defense against colonization with antimicrobial resistant (AR) bacteria. In this post hoc analysis of the phase 3 ECOSPOR III trial, we assessed impact of a microbiota-based oral therapeutic (fecal microbiota spores, live; VOWST Oral Spores [VOS], formerly SER-109]; Seres Therapeutics) compared with placebo, on AR gene (ARG) abundance in patients with recurrent Clostridioides difficile infection (rCDI). METHODS: Adults with rCDI were randomized to receive VOS or placebo orally for 3 days following standard-of-care antibiotics. ARG and taxonomic profiles were generated using whole metagenomic sequencing of stool at baseline and weeks 1, 2, 8, and 24 posttreatment. RESULTS: Baseline (n = 151) and serial posttreatment stool samples collected through 24 weeks (total N = 472) from 182 patients (59.9% female; mean age: 65.5 years) in ECOSPOR III as well as 68 stool samples obtained at a single time point from a healthy cohort were analyzed. Baseline ARG abundance was similar between arms and significantly elevated versus the healthy cohort. By week 1, there was a greater decline in ARG abundance in VOS versus placebo (P = .003) in association with marked decline of Proteobacteria and repletion of spore-forming Firmicutes, as compared with baseline. We observed abundance of Proteobacteria and non-spore-forming Firmicutes were associated with ARG abundance, while spore-forming Firmicutes abundance was negatively associated. CONCLUSIONS: This proof-of-concept analysis suggests that microbiome remodeling with Firmicutes spores may be a potential novel approach to reduce ARG colonization in the gastrointestinal tract.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Adulto , Humanos , Feminino , Idoso , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transplante de Microbiota Fecal , Clostridioides difficile/genética , Farmacorresistência Bacteriana , Infecções por Clostridium/microbiologia , Bactérias , Firmicutes
6.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012814

RESUMO

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Assuntos
Ceftriaxona , Enterococcus , Humanos , Fosforilação , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Biochem Biophys Res Commun ; 736: 150514, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128267

RESUMO

We conducted a thorough genome-wide investigation of protein phosphorylation in the halotolerant bacterium Mangrovibacter phragmitis (MPH) ASIOC01, using the Fe-IMAC enrichment method combined with tandem mass spectrometry under low- and high-salinity conditions. The phosphoproteome comprises 86 unique phosphorylated proteins, crucially involving pathways such as glycolysis/gluconeogenesis, the citrate cycle, chaperones, ribosomal proteins, and cell division. This study represents the first and most extensive investigation to-date comparing the bacterial phosphoproteome under different osmotic conditions using a gel-free approach. We identified 45 unique phosphoproteins in MPH cultured in media containing 1 % NaCl, and 33 exclusive phosphoproteins in MPH cultured in media containing 5 % NaCl. Eight phosphoproteins were detected in both growth conditions. Analysis of high-confidence phosphosites reveals that phosphorylation predominantly occurs on serine residues (52.3 %), followed by threonine (35.1 %) and tyrosine (12.6 %) residues. Interestingly, 34 % of the phosphopeptides display multiple phosphosites. Currently, prokaryotic phosphorylation site prediction platforms like MPSite and NetPhosBac 1.0 demonstrate an average prediction accuracy of only 21 % when applied to our dataset. Fourteen phosphoproteins did not yield matches when compared against dbPSP 2.0 (database of Phosphorylation Sites in Prokaryotes), indicating that these proteins may be novel phosphoproteins. These unique proteins undergoing phosphorylation under high salinity growth conditions potentially enhance their adaptive capabilities to environmental challenges.

8.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456839

RESUMO

Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.


Assuntos
Candida albicans , Candida , Humanos , Candida/genética , Candida albicans/genética , Candida tropicalis/genética , Evolução Biológica
9.
J Virol ; 97(1): e0194122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602364

RESUMO

Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.


Assuntos
Infecções por Birnaviridae , Proteína Quinase CDC2 , Ciclina B1 , Vírus da Doença Infecciosa da Bursa , Animais , Infecções por Birnaviridae/virologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Galinhas , Ciclina B1/metabolismo , Vírus da Doença Infecciosa da Bursa/genética , Fosforilação , Proteínas Estruturais Virais/metabolismo , Replicação Viral/genética
10.
New Phytol ; 242(3): 1348-1362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407427

RESUMO

Asexual organisms often differ in their geographic distributions from their sexual relatives. This phenomenon, termed geographic parthenogenesis, has long been known, but the underlying factors behind its diverse patterns have been under dispute. Particularly problematic is an association between asexuality and polyploidy in most taxa. Here, we present a new system of geographic parthenogenesis on the tetraploid level, promising new insights into this complex topic. We used flow cytometric seed screen and microsatellite genotyping to characterise the patterns of distribution of sexuals and apomicts and genotypic distributions in Rubus ser. Glandulosi across its range. Ecological modelling and local-scale vegetation and soil analyses were used to test for niche differentiation between the reproductive groups. Apomicts were detected only in North-western Europe, sexuals in the rest of the range in Europe and West Asia, with a sharp borderline stretched across Central Europe. Despite that, we found no significant differences in ecological niches. Genotypic richness distributions suggested independence of the reproductive groups and a secondary contact. We argue that unless a niche differentiation (resulting from polyploidy and/or hybridity) evolves, the main factors behind the patterns of geographic parthenogenesis in plants are phylogeographic history and neutral microevolutionary processes, such as clonal turnover.


Assuntos
Apomixia , Rubus , Partenogênese/genética , Ploidias , Poliploidia
11.
Mol Phylogenet Evol ; 197: 108082, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705251

RESUMO

In addition to topography and climate, biogeographic dispersal has been considered to influence plant diversity in the Himalaya-Hengduan Mountains (HHM), yet, the mode and tempo of sky island dispersal and its influence on species richness has been little explored. Through phylogenetic analysis of Gaultheria ser. Trichophyllae, a sky island alpine clade within the HHM, we test the hypothesis that dispersal has affected current local species richness. We inferred the dynamics of biogeographic dispersal with correlation tests on direction, distance, occurrence time, and regional species richness. We found that G. ser. Trichophyllae originated at the end of the Miocene and mostly dispersed toward higher longitudes (eastward). In particular, shorter intra-regional eastward dispersals and longer inter-regional westward dispersals were most frequently observed. We detected a prevalence of eastward intra-region dispersals in both glacial periods and interglacials. These dispersals may have been facilitated by the reorganization of paleo-drainages and monsoon intensification through time. We suggest that the timing of dispersal corresponding to glacial periods and the prevalence of intra-region dispersal, rather than dispersal frequency, most influenced the pattern of species richness of G. ser. Trichophyllae. This study facilitates a more comprehensive understanding of biodiversity in the sky islands within the HHM.


Assuntos
Biodiversidade , Filogenia , China , Filogeografia , Ilhas , Dispersão Vegetal
12.
J Exp Bot ; 75(1): 152-167, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769205

RESUMO

Extensins (EXTs), a class of hydroxyproline-rich glycoprotein with multiple Ser-Pro3-5 motifs, are known to play roles in cell wall reinforcement and environmental responses. EXTs with repetitive Tyr-X-Tyr (YXY) motifs for crosslinking are referred as crosslinking EXTs. Our comprehensive study spanned 194 algal and plant species, categorizing EXTs into seven subfamilies: classical extensins (EXT I and II), arabinogalactan-protein extensins (AGP-EXTs), proline-rich extensin-like receptor kinases (PERKs), leucine-rich repeat extensins (LRX I and II), formin homology (FH) domain-containing extensins (FH-EXTs), proline-rich, arabinogalactan proteins, conserved cysteines (PAC) domain-containing extensins (PAC I and II), and eight-cysteine motif (8CM)-containing extensins (8CM-EXTs). In the examined dataset, EXTs were detected ubiquitously in plants but infrequently in algae, except for one Coccomyxa and four Chlamydomonadales species. No crosslinking EXTs were found in Poales or certain Zingiberales species. Notably, the previously uncharacterized EXT II, PAC II, and liverwort-specific 8CM-EXTs were found to be crosslinking EXTs. EXT II, featuring repetitive YY motifs instead of the conventional YXY motif, was exclusively identified in Solanaceae. Furthermore, tandem genes encoding distinctive 8CM-EXTs specifically expressed in the germinating spores of Marchantia polymorpha. This updated classification of EXT types allows us to propose a plausible evolutionary history of EXT genes during the course of plant evolution.


Assuntos
Proteínas de Plantas , Plantas , Sequência de Aminoácidos , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Glicoproteínas/metabolismo , Parede Celular/metabolismo , Prolina/metabolismo
13.
Acta Neuropathol ; 147(1): 7, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175261

RESUMO

Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Animais , Camundongos , Encéfalo , Anilidas , Emaranhados Neurofibrilares , Proteínas Quinases , Proteínas Repressoras
14.
BMC Ophthalmol ; 24(1): 78, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378527

RESUMO

BACKGROUND: Myopia is the most prevalent form of refractive error that has a major negative impact on visual function and causes blurring of vision. We aimed to determine if Repeated Low-Level Red Light (RLRL) treatment is beneficial in treating childhood myopia in terms of axial length (AL), spherical equivalent refraction (SER), and sub foveal choroidal thickness (SFCT). METHODS: This systematic review was performed on RLRL for treatment of myopia in children compared to single vision spectacles (SVS). We employed the search strategy with key terms myopia and low-level light therapy then we searched PubMed, Scopus, Cochrane, and Web of Science databases. The mean differences (MD) were used to evaluate the treatment effects. Heterogeneity was quantified using I2 statistics and explored by sensitivity analysis. RESULTS: Five randomized controlled trials (RCTs) were included in our meta-analysis with a total of 833 patients, 407 in treatment group and 426 in control group. At a 3 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.16; 95% CI [-0.19, -0.12], SER (MD = 0.33; 95% CI [0.27, 0.38]), and SFCT (MD = 43.65; 95% CI [23.72, 45.58]). At a 6 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.21; 95% CI [-0.28, -0.15]), SER (MD = 0.46; 95% CI [0.26, 0.65]), and SFCT (MD = 25.07; 95% CI [18.18, 31.95]). At a 12 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.31; 95% CI [-0.42, -0.19]) and SER (MD = 0.63; 95% CI [0.52, 0.73]). CONCLUSION: This is the first systematic review and meta-analysis investigating only RCTs evidence supporting the efficacy of 650 nm RLRL for myopia control in the short term of 3, 6, and 12 months follow up. The present review revealed the clinical significance of RLRL as a new alternative treatment for myopia control with good user acceptability and no documented functional or structural damage. However, the effect of long-term RLRL treatment and the rebound effect after cessation require further investigations.


Assuntos
Terapia com Luz de Baixa Intensidade , Miopia , Luz Vermelha , Refração Ocular , Criança , Humanos , Comprimento Axial do Olho , Óculos , Terapia com Luz de Baixa Intensidade/métodos , Miopia/terapia , Miopia/fisiopatologia , Refração Ocular/fisiologia , Resultado do Tratamento , Acuidade Visual/fisiologia
15.
Food Microbiol ; 123: 104584, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038890

RESUMO

A single strain of Candida anglica, isolated from cider, is available in international yeast collections. We present here seven new strains isolated from French PDO cheeses. For one of the cheese strains, we achieved a high-quality genome assembly of 13.7 Mb with eight near-complete telomere-to-telomere chromosomes. The genomes of two additional cheese strains and of the cider strain were also assembled and annotated, resulting in a core genome of 5966 coding sequences. Phylogenetic analysis showed that the seven cheese strains clustered together, away from the cider strain. Mating-type locus analysis revealed the presence of a MATa locus in the cider strain but a MATalpha locus in all cheese strains. The presence of LINE retrotransposons at identical genome position in the cheese strains, and two different karyotypic profiles resulting from chromosomal rearrangements were observed. Together, these findings are consistent with clonal propagation of the cheese strains. Phenotypic trait variations were observed within the cheese population under stress conditions whereas the cider strain was found to have a much greater capacity for growth in all conditions tested.


Assuntos
Candida , Queijo , Alimentos Fermentados , Genoma Fúngico , Filogenia , Queijo/microbiologia , Candida/genética , Candida/metabolismo , Candida/classificação , Candida/isolamento & purificação , Candida/crescimento & desenvolvimento , Alimentos Fermentados/microbiologia , Adaptação Fisiológica , Microbiologia de Alimentos , Fermentação , Genes Fúngicos Tipo Acasalamento
16.
Genes Dev ; 30(8): 918-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034505

RESUMO

A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.


Assuntos
Genes p53/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , População Negra/genética , Carcinoma Hepatocelular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Cisplatino/farmacologia , Códon/química , Códon/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Ligação Proteica/genética , Fatores de Risco , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
17.
Genes Dev ; 30(8): 876-7, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083994

RESUMO

Somatic mutations in the tumor suppressor gene p53 occur in more than half of all human cancers. Rare germline mutations result in the Li-Fraumeni cancer family syndrome. In this issue ofGenes&Development, Jennis and colleagues (pp. 918-930) use an elegant mouse model to examine the affect of a polymorphism, P47S (rs1800371), in the N terminus of p53 that is found in Africans as well as more than a million African Americans. Remarkably, the single nucleotide change causes the mice to be substantially tumor-prone compared with littermates, suggesting that this allele causes an increased risk of developing cancer. The defect in p53 function is traced to a restriction in downstream gene regulation that reduces cell death in response to stress.


Assuntos
Genes p53/genética , Síndrome de Li-Fraumeni/genética , África , Animais , População Negra/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Ligação Proteica
18.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612387

RESUMO

Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells. We demonstrated that A1CF interacts with NKRF, independent of RNA and DNA, without affecting its expression or nuclear translocation; however, it modulates p65(Ser536) phosphorylation and IFN-ß levels. Truncation of A1CF or deletion on NKRF revealed that the RRM1 domain of A1CF and the p65 binding motif of NKRF are required for their interaction. Deletion of RRM1 on A1CF abrogates NKRF binding, and the decrease in IFN-ß expression and p65(Ser536) phosphorylation was induced by A1CF. Moreover, full-length A1CF, but not an RRM1 deletion mutant, promoted cell proliferation in renal carcinoma cells. Perturbation of A1CF levels in renal carcinoma cells altered anchorage-independent growth and tumor progression in nude mice. Moreover, p65(Ser536) phosphorylation and IFN-ß expression were lower, but ki67 was higher in A1CF-overexpressing tumor tissues of a xenograft mouse model. Notably, primary and metastatic samples from renal cancer patients exhibited high A1CF expression, low p65(Ser536) phosphorylation, and decreased IFN-ß levels in renal carcinoma tissues compared with the corresponding paracancerous tissues. Our results indicate that A1CF-decreased p65(Ser536) phosphorylation and IFN-ß levels may be caused by A1CF competitive binding to the p65-combined site on NKRF and demonstrate the direct binding of A1CF independent of RNA or DNA in signal pathway regulation and tumor promotion in renal carcinoma cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Desaminase APOBEC-1 , Carcinoma de Células Renais/genética , Modelos Animais de Doenças , DNA , Neoplasias Renais/genética , Camundongos Nus , Fosforilação , RNA , Proteínas de Ligação a RNA , Interferon beta
19.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673925

RESUMO

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Assuntos
Células Endoteliais , Sulfeto de Hidrogênio , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fosforilação/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Animais , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Tirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/metabolismo , Serina/metabolismo , Hipóxia/metabolismo
20.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999976

RESUMO

Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.


Assuntos
Neoplasias , Neovascularização Patológica , Fosfoproteínas Fosfatases , Transdução de Sinais , Humanos , Neovascularização Patológica/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Microambiente Tumoral , Fosforilação , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA