Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(5): 1176-1190.e17, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29107332

RESUMO

The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios/citologia , Vigília , Tonsila do Cerebelo/citologia , Animais , Comportamento Animal , Sinais (Psicologia) , Endoscopia/métodos , Feminino , Masculino , Camundongos , Microscopia/métodos , Ocitocina/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal , Comportamento Social
2.
Semin Cell Dev Biol ; 138: 117-127, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35469676

RESUMO

Adult females and males of most species differ in many aspects of their morphology, physiology and behavior, in response to sex-specific selective pressures that maximize fitness. While we have an increasingly good understanding of the genetic mechanisms that initiate these differences, the sex-specific developmental trajectories that generate them are much less well understood. Here we review recent advances in the sex-specific regulation of development focusing on two models where this development is increasingly well understood: Sexual dimorphism of body size in the fruit fly Drosophila melanogaster and sexual dimorphism of horns in the horned beetle Onthophagus taurus. Because growth and development are also supported by metabolism, the regulation of sex-specific metabolism during and after development is an important aspect of the generation of female and male phenotypes. Hitherto, the study of sex-specific development has largely been independent of the study of sex-specific metabolism. Nevertheless, as we discuss in this review, recent research has begun to reveal considerable overlap in the cellular and physiological mechanisms that regulate sex-specific development and metabolism.


Assuntos
Besouros , Drosophila melanogaster , Animais , Feminino , Masculino , Besouros/genética , Tamanho Corporal , Caracteres Sexuais
3.
Brain ; 147(3): 858-870, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671566

RESUMO

Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.


Assuntos
Doença de Parkinson , Humanos , Feminino , Masculino , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Caracteres Sexuais , Fenótipo , Encéfalo
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074916

RESUMO

Pogona vitticeps has female heterogamety (ZZ/ZW), but the master sex-determining gene is unknown, as it is for all reptiles. We show that nr5a1 (Nuclear Receptor Subfamily 5 Group A Member 1), a gene that is essential in mammalian sex determination, has alleles on the Z and W chromosomes (Z-nr5a1 and W-nr5a1), which are both expressed and can recombine. Three transcript isoforms of Z-nr5a1 were detected in gonads of adult ZZ males, two of which encode a functional protein. However, ZW females produced 16 isoforms, most of which contained premature stop codons. The array of transcripts produced by the W-borne allele (W-nr5a1) is likely to produce truncated polypeptides that contain a structurally normal DNA-binding domain and could act as a competitive inhibitor to the full-length intact protein. We hypothesize that an altered configuration of the W chromosome affects the conformation of the primary transcript generating inhibitory W-borne isoforms that suppress testis determination. Under this hypothesis, the genetic sex determination (GSD) system of P. vitticeps is a W-borne dominant female-determining gene that may be controlled epigenetically.


Assuntos
Alelos , Cromossomos/genética , Splicing de RNA , Processos de Determinação Sexual , Fator Esteroidogênico 1/genética , Sequência de Aminoácidos , Animais , Cromossomos/química , Feminino , Dosagem de Genes , Lagartos , Masculino , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Répteis , Cromossomos Sexuais , Fatores Sexuais , Fator Esteroidogênico 1/química , Relação Estrutura-Atividade
5.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37116199

RESUMO

Phenotypic sexual dimorphism can be mediated by sex differences in gene expression. We examine two forms of sexual dimorphism in gene expression in Drosophila melanogaster: 1) sex-biased gene expression (SBGE) in which the sexes differ in the amount a gene is expressed and 2) sexual dimorphism in isoform usage, that is, sex-specific splicing (SSS). In whole body (but not the head) expression, we find a negative association between SBGE and SSS, possibly suggesting that these are alternate routes to resolving sexual antagonistic selection. Next, we evaluate whether expression dimorphism contributes to the heterogeneity among genes in rmf, the intersexual genetic correlation in body expression that constrains the extent to which a gene's expression can evolve independently between the sexes. We find lower rmf values for genes with than without SSS. We find higher rmf values for male- than female-biased genes (except genes with extreme male bias), even though male-biased genes are known to have greater evolutionary divergence in expression. Finally, we examine population genetic patterns in relation to SBGE and SSS because genes with expression dimorphism have likely experienced a history of sex differences in selection. SSS is associated with reduced values of Tajima's D and elevated direction of selection (DoS) values, suggestive of higher rates of adaptive evolution. Though DoS is highly elevated for genes with extreme male bias, DoS otherwise tends to decline from female-biased to unbiased to male-biased genes. Collectively, the results indicate that SBGE and SSS are differentially distributed across the genome and are associated with different forms of selection.


Assuntos
Drosophila melanogaster , Caracteres Sexuais , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Genoma , Expressão Gênica
6.
Front Neuroendocrinol ; 71: 101102, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689249

RESUMO

The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.


Assuntos
Epigênese Genética , Neuroesteroides , Feminino , Masculino , Humanos , Neurônios/metabolismo , Neuroesteroides/metabolismo , Testosterona/metabolismo
7.
Am J Hum Genet ; 108(1): 68-83, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33385324

RESUMO

The proportion of samples with one or more close relatives in a genetic dataset increases rapidly with sample size, necessitating relatedness modeling and enabling pedigree-based analyses. Despite this, relatives are generally unreported and current inference methods typically detect only the degree of relatedness of sample pairs and not pedigree relationships. We developed CREST, an accurate and fast method that identifies the pedigree relationships of close relatives. CREST utilizes identity by descent (IBD) segments shared between a pair of samples and their mutual relatives, leveraging the fact that sharing rates among these individuals differ across pedigree configurations. Furthermore, CREST exploits the profound differences in sex-specific genetic maps to classify pairs as maternally or paternally related-e.g., paternal half-siblings-using the locations of autosomal IBD segments shared between the pair. In simulated data, CREST correctly classifies 91.5%-100% of grandparent-grandchild (GP) pairs, 80.0%-97.5% of avuncular (AV) pairs, and 75.5%-98.5% of half-siblings (HS) pairs compared to PADRE's rates of 38.5%-76.0% of GP, 60.5%-92.0% of AV, 73.0%-95.0% of HS pairs. Turning to the real 20,032 sample Generation Scotland (GS) dataset, CREST identified seven pedigrees with incorrect relationship types or maternal/paternal parent sexes, five of which we confirmed as mistakes, and two with uncertain relationships. After correcting these, CREST correctly determines relationship types for 93.5% of GP, 97.7% of AV, and 92.2% of HS pairs that have sufficient mutual relative data; the parent sex in 100% of HS and 99.6% of GP pairs; and it completes this analysis in 2.8 h including IBD detection in eight threads.


Assuntos
Genoma Humano/genética , Feminino , Ligação Genética/genética , Genótipo , Humanos , Masculino , Modelos Genéticos , Linhagem , Escócia
8.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34415309

RESUMO

Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.


Assuntos
Caenorhabditis elegans/fisiologia , Diferenciação Celular/fisiologia , Sistema Nervoso/fisiopatologia , Animais , Encéfalo/fisiologia , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter/genética , Masculino , Neurogênese/genética , Neurônios/fisiologia , Transgenes/genética
9.
BMC Med ; 22(1): 132, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519925

RESUMO

BACKGROUND: The impact of sodium intake on cardiovascular disease (CVD) health and mortality has been studied for decades, including the well-established association with blood pressure. However, non-linear patterns, dose-response associations, and sex differences in the relationship between sodium and potassium intakes and overall and cause-specific mortality remain to be elucidated and a comprehensive examination is lacking. Our study objective was to determine whether intake of sodium and potassium and the sodium-potassium ratio are associated with overall and cause-specific mortality in men and women. METHODS: We conducted a prospective analysis of 237,036 men and 179,068 women in the National Institutes of Health-AARP Diet and Health Study. Multivariable-adjusted Cox proportional hazard regression models were utilized to calculate hazard ratios. A systematic review and meta-analysis of cohort studies was also conducted. RESULTS: During 6,009,748 person-years of follow-up, there were 77,614 deaths, 49,297 among men and 28,317 among women. Adjusting for other risk factors, we found a significant positive association between higher sodium intake (≥ 2,000 mg/d) and increased overall and CVD mortality (overall mortality, fifth versus lowest quintile, men and women HRs = 1.06 and 1.10, Pnonlinearity < 0.0001; CVD mortality, fifth versus lowest quintile, HRs = 1.07 and 1.21, Pnonlinearity = 0.0002 and 0.01). Higher potassium intake and a lower sodium-potassium ratio were associated with a reduced mortality, with women showing stronger associations (overall mortality, fifth versus lowest quintile, HRs for potassium = 0.96 and 0.82, and HRs for the sodium-potassium ratio = 1.09 and 1.23, for men and women, respectively; Pnonlinearity < 0.05 and both P for interaction ≤ 0.0006). The overall mortality associations with intake of sodium, potassium and the sodium-potassium ratio were generally similar across population risk factor subgroups with the exception that the inverse potassium-mortality association was stronger in men with lower body mass index or fruit consumption (Pinteraction < 0.0004). The updated meta-analysis of cohort studies based on 42 risk estimates, 2,085,904 participants, and 80,085 CVD events yielded very similar results (highest versus lowest sodium categories, pooled relative risk for CVD events = 1.13, 95% CI: 1.06-1.20; Pnonlinearity < 0.001). CONCLUSIONS: Our study demonstrates significant positive associations between daily sodium intake (within the range of sodium intake between 2,000 and 7,500 mg/d), the sodium-potassium ratio, and risk of CVD and overall mortality, with women having stronger sodium-potassium ratio-mortality associations than men, and with the meta-analysis providing compelling support for the CVD associations. These data may suggest decreasing sodium intake and increasing potassium intake as means to improve health and longevity, and our data pointing to a sex difference in the potassium-mortality and sodium-potassium ratio-mortality relationships provide additional evidence relevant to current dietary guidelines for the general adult population. SYSTEMATIC REVIEW REGISTRATION: PROSPERO Identifier: CRD42022331618.


Assuntos
Potássio na Dieta , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Potássio na Dieta/administração & dosagem , Fatores Sexuais , Idoso , Sódio na Dieta/administração & dosagem , Sódio na Dieta/efeitos adversos , Doenças Cardiovasculares/mortalidade , Estudos de Coortes
10.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879567

RESUMO

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Assuntos
Animais Recém-Nascidos , Infecções por Chlamydia , Chlamydia muridarum , Animais , Camundongos , Feminino , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Masculino , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tronco Encefálico/patologia , Doenças Neuroinflamatórias/microbiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
11.
Biol Reprod ; 110(2): 339-354, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37971364

RESUMO

Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.


Assuntos
Placenta , Aumento de Peso , Humanos , Gravidez , Camundongos , Feminino , Masculino , Animais , Placenta/metabolismo , Feto/metabolismo , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos
12.
New Phytol ; 241(2): 926-936, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899633

RESUMO

Pollinators are important drivers of floral trait evolution, yet plant populations are not always perfectly adapted to their pollinators. Such apparent maladaptation may result from conflicting selection through male and female sexual functions in hermaphrodites. We studied sex-specific mating patterns and phenotypic selection on floral traits in Aconitum gymnandrum. After genotyping 1786 offspring, we partitioned individual fitness into sex-specific selfed and outcrossed components and estimated phenotypic selection acting through each. Relative fitness increased with increasing mate number, and more so for male function. This led to greater opportunity for selection through outcrossed male fitness, though patterns of phenotypic selection on floral traits tended to be similar, and with better support for selection through female rather than male fitness components. We detected directional selection through one or more fitness component for larger flower number, larger flowers, and more negative nectar gradients within inflorescences. Our results are consistent with Bateman's principles for sex-specific mating patterns and illustrate that, despite the expected difference in opportunity for selection, patterns of variation in selection across traits can be rather similar for the male and female sexual functions. These results shed new light on the effect of sexual selection on the evolution of floral traits.


Assuntos
Ranunculaceae , Reprodução , Flores/genética , Inflorescência , Fenótipo , Polinização , Seleção Genética
13.
Heart Fail Rev ; 29(1): 235-256, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996694

RESUMO

Due to hormonal variations, heart failure with preserved ejection fraction (HFpEF) remains prevalent in women and affects almost half of the heart failure (HF) patients. Given the yearly death rate of 10-30% and the unavailability of medications targeting HFpEF, the need arises for a better understanding of the fundamental mechanisms of this syndrome. This comprehensive review explores sex-specific differences in traditional risk factors; female-specific factors that may impact HFpEF development and response to therapy, including variations in hormone levels that may occur pre- and post-menopausal or during pregnancy; and disparities in comorbidities, clinical presentation, and diagnostic challenges. Lastly, the review addresses prognostic outcomes, noting that women with HFpEF have a poor quality of life but a higher survival rate. It also discusses novel biomarkers and precision medicine, emphasizing their potential to improve early detection and personalized treatment.


Assuntos
Insuficiência Cardíaca , Masculino , Humanos , Feminino , Prognóstico , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/tratamento farmacológico , Função Ventricular Esquerda/fisiologia , Volume Sistólico/fisiologia , Qualidade de Vida , Fatores de Risco
14.
Cardiovasc Diabetol ; 23(1): 109, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553758

RESUMO

BACKGROUND: In this study, we evaluated the lipidome alterations caused by type 1 diabetes (T1D) and type 2 diabetes (T2D), by determining lipids significantly associated with diabetes overall and in both sexes, and lipids associated with the glycaemic state. METHODS: An untargeted lipidomic analysis was performed to measure the lipid profiles of 360 subjects (91 T1D, 91 T2D, 74 with prediabetes and 104 controls (CT)) without cardiovascular and/or chronic kidney disease. Ultra-high performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-ESI-MS) was conducted in two ion modes (positive and negative). We used multiple linear regression models to (1) assess the association between each lipid feature and each condition, (2) determine sex-specific differences related to diabetes, and (3) identify lipids associated with the glycaemic state by considering the prediabetes stage. The models were adjusted by sex, age, hypertension, dyslipidaemia, body mass index, glucose, smoking, systolic blood pressure, triglycerides, HDL cholesterol, LDL cholesterol, alternate Mediterranean diet score (aMED) and estimated glomerular filtration rate (eGFR); diabetes duration and glycated haemoglobin (HbA1c) were also included in the comparison between T1D and T2D. RESULTS: A total of 54 unique lipid subspecies from 15 unique lipid classes were annotated. Lysophosphatidylcholines (LPC) and ceramides (Cer) showed opposite effects in subjects with T1D and subjects with T2D, LPCs being mainly up-regulated in T1D and down-regulated in T2D, and Cer being up-regulated in T2D and down-regulated in T1D. Also, Phosphatidylcholines were clearly down-regulated in subjects with T1D. Regarding sex-specific differences, ceramides and phosphatidylcholines exhibited important diabetes-associated differences due to sex. Concerning the glycaemic state, we found a gradual increase of a panel of 1-deoxyceramides from normoglycemia to prediabetes to T2D. CONCLUSIONS: Our findings revealed an extensive disruption of lipid metabolism in both T1D and T2D. Additionally, we found sex-specific lipidome changes associated with diabetes, and lipids associated with the glycaemic state that can be linked to previously described molecular mechanisms in diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Masculino , Feminino , Humanos , Lipidômica , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/complicações , HDL-Colesterol , Ceramidas , Fosfatidilcolinas
15.
Insect Mol Biol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167359

RESUMO

Waprin, a WAP (Whey acidic protein) domain-containing extracellular secretory protein, is widely known for its antibacterial properties. In this study, a waprin homologue (Tc_wapF) expressing in a female-specific manner was identified in Tribolium castaneum, through the analysis of sex-specific transcriptomes. Developmental- and tissue-specific profiling revealed the widespread expression of Tc_wapF in adult female tissues, particularly in the ovary, gut and fatbody. This female-specific expression of Tc_wapF is not regulated by the classical sex-determination cascade of T. castaneum, as we fail to get any attenuation in Tc_wapF transcript levels in Tcdsx and Tctra (key players of sex determination cascade of T. castaneum) knockdown females. RNA interference-mediated knockdown of Tc_wapF in females led to the non-hatching of eggs laid by these females, suggesting the crucial role of Tc_wapF in the embryonic development in T. castaneum. This is the first report on the identification of a sex-specific waprin homologue in an insect and its involvement in embryonic development. Future investigations on the functional conservation of insect waprins and their mechanistic role in embryonic development can be exploited for improving pest management strategies.

16.
Toxicol Appl Pharmacol ; 482: 116768, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030093

RESUMO

Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.


Assuntos
Arsênio , Neoplasias , Gravidez , Feminino , Humanos , Arsênio/toxicidade , Metilação de DNA , Placenta , Sangue Fetal , Ilhas de CpG , Neoplasias/induzido quimicamente , Neoplasias/genética , Exposição Materna/efeitos adversos
17.
Glob Chang Biol ; 30(3): e17191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433338

RESUMO

The response to climate change in highly dimorphic species can be hindered by differences between sexes in habitat preferences and movement patterns. The Antarctic fur seal, Arctocephalus gazella, is the most abundant pinniped in the Southern Hemisphere, and one of the main consumers of Antarctic krill, Euphausia superba, in the Southern Ocean. However, the populations breeding in the Atlantic Southern Ocean are decreasing, partly due to global warming. Male and female Antarctic fur seals differ greatly in body size and foraging ecology, and little is known about their sex-specific responses to climate change. We used satellite tracking data and Earth System Models to predict changes in habitat suitability for male and female Antarctic fur seals from the Western Antarctic Peninsula under different climate change scenarios. Under the most extreme scenario (SSP5-8.5; global average temperature +4.4°C projected by 2100), suitable habitat patches will shift southward during the non-breeding season, leading to a minor overall habitat loss. The impact will be more pronounced for females than for males. The reduction of winter foraging grounds might decrease the survival of post-weaned females, reducing recruitment and jeopardizing population viability. During the breeding season, when males fast on land, suitable foraging grounds for females off the South Shetland Islands will remain largely unmodified, and new ones will emerge in the Bellingshausen Sea. As Antarctic fur seals are income breeders, the foraging grounds of females should be reasonably close to the breeding colony. As a result, the new suitable foraging grounds will be useful for females only if nearby beaches currently covered by sea ice emerge by the end of the century. Furthermore, the colonization of these new, ice-free breeding locations might be limited by strong female philopatry. These results should be considered when managing the fisheries of Antarctic krill in the Southern Ocean.


La resposta al canvi climàtic en espècies amb dimorfisme sexual pot veure's dificultada per les diferències entre sexes respecte a les seves preferències d'ús de l'hàbitat i els seus patrons de moviment. L'os marí antàrtic (Arctocephalus gazella), és el pinnípede més abundant a l'Hemisferi Sud i un dels principals consumidors de krill antàrtic, (Euphausia superba), a l'Oceà Antàrtic. No obstant això, les poblacions que es reprodueixen al sector Atlàntic de l'Oceà Antàrtic estan disminuint, en part a causa de l'escalfament global. Els mascles i les femelles de l'os marí antàrtic difereixen considerablement en la seva mida corporal i ecologia tròfica, i es té poc coneixement sobre les seves respostes específiques al canvi climàtic. En aquest estudi hem utilitzat dades de seguiment per satèl·lit i models del Sistema Terrestre per predir els canvis en la idoneïtat de l'hàbitat per als mascles i les femelles d'os marí antàrtic de la Península Antàrtica Occidental sota diferents escenaris de canvi climàtic. Sota l'escenari més extrem (SSP5-8.5; temperatura mitjana mundial +4.4°C prevista per a 2100), les zones d'hàbitat idoni es desplaçaran cap al sud durant l'època d'hivernada (no reproducció), provocant una lleugera pèrdua d'hàbitat idoni. Tot i això, l'impacte serà més pronunciat per a les femelles que per als mascles. Aquesta reducció dels territoris d'alimentació durant l'hivern podria disminuir la supervivència de les femelles postdeslletades, reduint-ne el reclutament i posant en perill la viabilitat de la població. Durant l'època de cria, quan els mascles es troben majoritàriament en dejú a terra, els territoris d'alimentació idonis per a les femelles al voltant de les Illes Shetland del Sud romandran en gran part sense modificar-se, i n'emergiran de nous al mar de Bellingshausen. Com que les femelles d'os marí antàrtic es continuen alimentant durant la cria, els territoris d'alimentació de les femelles han d'estar raonablement a prop de la colònia de cria. Com a resultat, aquestes noves zones d'alimentació seran útils només si les platges properes, actualment cobertes de gel marí, emergeixen al llarg del segle. A més, la colonització d'aquests nous llocs de reproducció lliures de gel podria veure's limitada per la forta filopatria de les femelles. Aquests resultats haurien de tenir-se en compte en la gestió de les pesqueries de krill a l'Oceà Antàrtic.


Assuntos
Otárias , Feminino , Masculino , Animais , Regiões Antárticas , Oceano Atlântico , Tamanho Corporal , Mudança Climática
18.
Artigo em Inglês | MEDLINE | ID: mdl-38760578

RESUMO

Prolactin (PRL) is secreted throughout life in men and women. At elevated levels, its physiological role in pregnancy and lactation, and pathological effects, are well known. However clinical implications of low circulating PRL are not well established. We conducted a meta-analysis to examine the relationship between low PRL levels and type 2 diabetes. Five papers included cross-sectional studies comprising 8,720 men (mean age range 51.4-60 years) and 3,429 women (49.5-61.6 years), and four papers included cohort studies comprising 2,948 men (52.1-60.0 years) and 3,203 women (49.2-60.1 years). Individuals with pregnancy, lactation and hyperprolactinemia, drugs known to alter circulating PRL levels, or pituitary diseases had been excluded. Although most studies used quartiles to categorize PRL groups for analysis, PRL cut-off values (all measured by chemiluminescence immunoassay) were variably defined between studies: the lowest PRL quartiles ranged from 3.6 ng/ml to 7.2 ng/ml in men and between 4.5 ng/ml to 8 ng/ml in women; and the highest PRL quartiles ranged from 6.9 ng/ml to 13 ng/ml in men and 9.6 ng/ml to 15.8 ng/ml in women. Type 2 diabetes was defined variably using self-reported physician's diagnosis, fasting blood glucose, oral glucose tolerance test or glycated hemoglobin (HbA1C). In cross-sectional studies, compared to individuals in the highest PRL groups (reference), those in the lowest PRL groups had greater risk of type 2 diabetes both in men: odds ratio (OR) and 95% confidence interval = 1.86 (1.56-2.22) and in women: OR = 2.15 (1.63-2.85). In cohort studies, women showed a significant association between low PRL and type 2 diabetes: OR = 1.52 (1.02-2.28) but not men: OR = 1.44 (0.46-4.57). Relatively low heterogeneity was observed (I2 = 25-38.4%) for cross-sectional studies, but higher for cohort studies (I2 = 52.8-79.7%). In conclusion, low PRL is associated with type 2 diabetes, but discrepancy between men and women in the relationship within cohort studies requires further research.

19.
FASEB J ; 37(1): e22677, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515682

RESUMO

Epigenetic defects induced by assisted reproductive technologies (ART) have been suggested as a potential mechanism contributing to suboptimal placentation. Here, we hypothesize that ART perturbs DNA methylation (DNAme) and gene expression during early placenta development, leading to abnormal placental phenotypes observed at term. Since folic acid (FA) plays a crucial role in epigenetic regulation, we propose that FA supplementation can rescue ART-induced placental defects. Female mice were placed on a control diet (CD), a moderate 4-fold (FAS4) or high dose 10-fold (FAS10) FA-supplemented diet prior to ART and compared to a natural mating group. ART resulted in 41 and 28 differentially expressed genes (DEGs) in E10.5 female and male placentas, respectively. Many DEGs were implicated in early placenta development and associated with DNAme changes; a number clustered at known imprinting control regions (ICR). In females, FAS4 partially corrected alterations in gene expression while FAS10 showed evidence of male-biased adverse effects. DNAme and gene expression for five genes involved in early placentation (Phlda2, EphB2, Igf2, Peg3, L3mbtl1) were followed up in placentas from normal as well as delayed and abnormal embryos. Phlda2 and Igf2 expression levels were lowest after ART in placentas of female delayed embryos. Moreover, ART concomitantly reduced DNAme at the Kcnq1ot1 ICR which regulates Phlda2 expression; FAS4 partially improved DNAme in a sex-specific manner. In conclusion, ART-associated placental DNAme and transcriptome alterations observed at mid-gestation are sex-specific; they may help explain adverse placental phenotypes detected at term and are partially corrected by maternal moderate dose FA supplementation.


Assuntos
Impressão Genômica , Placenta , Feminino , Camundongos , Gravidez , Masculino , Animais , Placenta/metabolismo , Epigênese Genética , Metilação de DNA , Reprodução , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Suplementos Nutricionais
20.
Cell Commun Signal ; 22(1): 330, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879537

RESUMO

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/ß-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/ß-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/ß-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/ß-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/ß-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/ß-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.


Assuntos
Testículo , Via de Sinalização Wnt , Humanos , Masculino , Testículo/metabolismo , Testículo/embriologia , Feminino , Diferenciação Sexual/genética , Feto/metabolismo , Diferenciação Celular , Proliferação de Células , beta Catenina/metabolismo , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Ovário/metabolismo , Ovário/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA