Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(41): e2307718120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788310

RESUMO

Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.


Assuntos
Fímbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fímbrias Bacterianas/metabolismo , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Fenômenos Físicos , Proteínas de Fímbrias/metabolismo
2.
J Wound Care ; 33(Sup2): S4-S9, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38348862

RESUMO

OBJECTIVE: This study evaluated the effect of pressure injury (PI) prophylactic dressings used for patients at high risk of PI development to reduce friction, shear force and pressure, and their combined force, in an original polymer-based skin model. METHOD: A low-friction outer-layer hydrocolloid (LFH) dressing and a multilayered silicone foam (MSF) dressing were used. Before application, compression and friction properties were measured. Our original experimental model-the 'simulated skin-shearing test'-consisted of: a weight; a polyurethane-based skin model containing a three-axis tactile sensor; dressings; a table covered with bedsheets; and a mechanical tester, by which the interface friction force, internal shear force and pressure were measured continuously during skin model movements. An estimated combined force generated by internal shear and pressure was represented as a vector. A model with no dressing was used as a control. RESULTS: The LFH dressing had significantly higher compression strength versus the MSF dressing. In contrast, the dynamic coefficient of friction was lower for the LFH dressing versus the MSF dressing (p<0.05). In simulated skin-shearing test results, shear forces were 0.45N and 0.42N for LFH and MSF dressings, respectively, with no significant difference. The estimated combined force was lower for the MSF dressing compared with that of the LFH dressing and control. CONCLUSION: The shear force-reducing effect in the skin model was equivalent between the LFH and MSF dressings. However, the MSF dressing significantly reduced the force generated by a combination of internal shear force and pressure compared with the LFH dressing.


Assuntos
Úlcera por Pressão , Humanos , Úlcera por Pressão/prevenção & controle , Polímeros , Pele , Bandagens , Pressão
3.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400409

RESUMO

The performance of the overhead squat may affect the golf swing mechanics associated with golf-related low back pain. This study investigates the difference in lumbar kinematics and joint loads during the golf downswing between golfers with different overhead squat abilities. Based on the performance of the overhead squat test, 21 golfers aged 18 to 30 years were divided into the highest-scoring group (HS, N = 10, 1.61 ± 0.05 cm, and 68.06 ± 13.67 kg) and lowest-scoring group (LS, N = 11, 1.68 ± 0.10 cm, and 75.00 ± 14.37 kg). For data collection, a motion analysis system, two force plates, and TrackMan were used. OpenSim 4.3 software was used to simulate the joint loads for each lumbar joint. An independent t-test was used for statistical analysis. Compared to golfers demonstrating limitations in the overhead squat test, golfers with better performance in the overhead squat test demonstrated significantly greater angular extension displacement on the sagittal plane, smaller lumbar extension angular velocity, and smaller L4-S1 joint shear force. Consequently, the overhead squat test is a useful index to reflect lumbar kinematics and joint loading patterns during the downswing and provides a good training guide reference for reducing the risk of a golf-related lower back injury.


Assuntos
Golfe , Fenômenos Biomecânicos , Vértebras Lombares , Postura , Fenômenos Mecânicos , Movimento
4.
J Stroke Cerebrovasc Dis ; 33(9): 107851, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992405

RESUMO

BACKGROUND: Various factors, including blood, inflammatory, infectious, and immune factors, can cause ischemic stroke. However, the primary cause is often the instability of cervical arteriosclerosis plaque. It is estimated that 18-25% of ischemic strokes are caused by the rupture of carotid plaque.1 Plaque stability is crucial in determining patient prognosis. Developing a highly accurate, non-invasive, or minimally invasive technique to assess carotid plaque stability is crucial for diagnosing and treating stroke.Previous research by our group has demonstrated that the expression levels of CHOP (C/EBP homologous protein) and GRP78 (glucose-regulated protein 78) are correlated with the stability of atherosclerotic plaques.2 OBJECT: This research assesses changes in GRP78 and CHOP expressions in human umbilical vein endothelial cells(HUVEC) following experiments within the hemodynamic influencing factors test system. Additionally, it includes conducting an empirical study on the impact of blood flow shear force on the stability of human carotid atherosclerotic plaques. The objective is to explore the implications of blood flow shear force on the stability of carotid atherosclerotic plaques. METHOD: The hemodynamic influencing factors test bench system was configured with low (Group A, 4 dyns/cm²), medium (Group B, 8 dyns/cm²), and high shear force groups (Group C, 12 dyns/cm²). Relative expression levels of GRP78 and CHOP proteins in human umbilical vein endothelial cells were measured using Western blot analysis, and quantitative analysis of GRP78 and CHOP mRNA was conducted using RT-qPCR. Meanwhile, plaques from 60 carotid artery patients, retrieved via Carotid Endarterectomy (CEA), were classified into stable (S) and unstable (U) groups based on pathological criteria. Shear force at the carotid bifurcation was measured preoperatively using ultrasound. Western blot and RT-qPCR were used to analyze the relative expression levels of GRP78 and CHOP proteins and mRNA, respectively, in the plaque specimens from both groups. RESULT: Expression levels of GRP78, CHOP proteins, and their mRNAs were assessed in groups A, B, and C via Western blot and RT-qPCR. Results showed that in the low-shear group, all markers were elevated in group A compared to groups B and C. Statistical analysis revealed significantly lower shear forces at the carotid bifurcation in group U compared to group S. In group U plaques, GRP78 and CHOP expressions were significantly higher in group U than in group S. CONCLUSION: Blood flow shear forces variably affect the expression of GRP78 and CHOP proteins, as well as their mRNA levels, in vascular endothelial cells. The lower the shear force and fluid flow rate, the higher the expression of GRP78 and CHOP, potentially leading to endoplasmic reticulum stress(ERS), which may destabilize the plaque.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Placa Aterosclerótica , Fator de Transcrição CHOP , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/cirurgia , Doenças das Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Estenose das Carótidas/fisiopatologia , Estenose das Carótidas/metabolismo , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/metabolismo , Estresse Mecânico , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 74-80, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322523

RESUMO

Objective: To explore the mechanobiological mechanism of fluid shear force (FSF) on the protection, injury, and destruction of the structure and function of the blood-brain barrier (BBB) under normal physiological conditions, ischemic hypoperfusion, and postoperative hyperperfusion conditions. BBB is mainly composed of brain microvascular endothelial cells. Rat brain microvascular endothelial cells (rBMECs) were used as model cells to conduct the investigation. Methods: rBMECs were seeded at a density of 1×105 cells/cm2 and incubated for 48 h. FSF was applied to the rBMECs at 0.5, 2, and 20 dyn/cm2, respectively, simulating the stress BBB incurs under low perfusion, normal physiological conditions, and high FSF after bypass grafting when there is cerebral vascular stenosis. In addition, a rBMECs static culture group was set up as the control (no force was applied). Light microscope, scanning electron microscope (SEM), and laser confocal microscope (LSCM) were used to observe the changes in cell morphology and cytoskeleton. Transmission electron microscope (TEM) was used to observe the tight junctions. Immunofluorescence assay was performed to determine changes in the distribution of tight junction-associated proteins claudin-5, occludin, and ZO-1 and adherens junction-associated proteins VE-cadherin and PECAM-1. Western blot was performed to determine the expression levels of tight junction-associated proteins claudin-5, ZO-1, and JAM4, adherens junction-associated protein VE-cadherin, and key proteins in Rho GTPases signaling (Rac1, Cdc42, and RhoA) under FSF at different intensities. Results: Microscopic observation showed that the cytoskeleton exhibited disorderly arrangement and irregular orientation under static culture and low shear force (0.5 dyn/cm2). Under normal physiological shear force (2 dyn/cm2), the cytoskeleton was rearranged in the orientation of the FSF and an effective tight junction structure was observed between cells. Under high shear force (20 dyn/cm2), the intercellular space was enlarged and no effective tight junction structure was observed. Immunofluorescence results showed that, under low shear force, the gap between the cells decreased, but there was also decreased distribution of tight junction-associated proteins and adherens junction-associated proteins at the intercellular junctions. Under normal physiological conditions, the cells were tightly connected and most of the tight junction-associated proteins were concentrated at the intercellular junctions. Under high shear force, the gap between the cells increased significantly and the tight junction and adherens junction structures were disrupted. According to the Western blot results, under low shear force, the expression levels of claudin-5, ZO-1, and VE-cadherin were significantly up-regulated compared with those of the control group (P<0.05). Under normal physiological shear force, claudin-5, ZO-1, JAM4, and VE-cadherin were highly expressed compared with those of the control group (P<0.05). Under high shear force, the expressions of claudin-5, ZO-1, JAM4, and VE-cadherin were significantly down-regulated compared with those of the normal physiological shear force group (P<0.05). Under normal physiological shear force, intercellular expressions of Rho GTPases proteins (Rac1, Cdc42, and RhoA) were up-regulated and were higher than those of the other experimental groups (P<0.05). The expressions of Rho GTPases under low and high shear forces were down-regulated compared with that of the normal physiological shear force group (P<0.05). Conclusion: Under normal physiological conditions, FSF helps maintain the integrity of the BBB structure, while low or high shear force can damage or destroy the BBB structure. The regulation of BBB by FSF is closely related to the expression and distribution of tight junction-associated proteins and adherens junction-associated proteins.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Ratos , Animais , Claudina-5/metabolismo , Encéfalo/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Environ Res ; 237(Pt 1): 116916, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597832

RESUMO

Wastewater treatment plants (WWTPs) are major recipients of microplastics (MPs) that break down into nanoplastics (NPs) during wastewater treatment through physical, chemical, and biological processes. In particular, mechanical stress induced by the mixing process commonly used in WWTPs is thought to play a crucial role in the production of secondary MPs/NPs, which are then discharged into the open water environment through the WWTP effluent. This study investigated the fragmentation of 250 and 106 µm-sized pristine and weathered polystyrene (PS) particles using a four-blade mechanical impeller. At an energy density level of 100 kJ/L, the 250 and 106 µm-sized pristine PS particles were broken down into mean sizes of 120.6 ± 19.1 and 95.6 ± 16.8 nm, respectively. The smallest sizes were found to be 90.9 ± 17.8 and 72.4 ± 19.6 nm due to the breakdown of 250 and 106 µm-sized weathered PS particles, respectively. The morphology of the PS particles after fragmentation also demonstrated the initiation of surface damage, such as cracks, pores and rough structures. This surface crack propagation, caused by mechanically induced water shear force, was identified as the primary mechanism of MP fragmentation into NPs. It was also found that NP levels significantly increased after 40 min of mixing, with at least a 28-fold increase in water solution at an energy density of 32 kJ/L. These results clearly show that the breakdown of MPs into NPs is a continuous process during wastewater treatment, posing a significant threat to the water environment through NP release by WWTP effluents.

7.
Anim Genet ; 54(6): 786-791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828654

RESUMO

Meat tenderness is considered the most important trait contributing to beef quality, level of consumer satisfaction, willingness to pay premium prices and industry profit. Genomic selection method would be helpful for genetic improvement of traits with low heritability and that are difficult to measure. The identification of core genes can aid genomic selection for complex traits with low heritability that are difficult to measure. We performed statistical analysis of associations between longissimus dorsi muscle tenderness and gene expression in 20 Hanwoo cattle, using Warner-Bratzler shear force and RNAseq data, respectively. We found a total of 166 core genes, from which six (ASAP1, CAPN5, ELN, SUMF2, TTC8 and MGAT4A) were regulated by 16 cis-expression quantitative trait loci (eQTL) SNPs. Notably, we found that a cis-eQTL SNP of the ELN gene contained an MFZ-1 binding site in its putative promoter region. These findings provide useful information for genomic prediction of beef tenderness in Hanwoo cattle.


Assuntos
Carne , Locos de Características Quantitativas , Bovinos/genética , Animais , Carne/análise , Fenótipo , Biomarcadores , República da Coreia , Músculo Esquelético/fisiologia
8.
Proc Natl Acad Sci U S A ; 117(1): 717-726, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871197

RESUMO

Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, ß-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC's ability to mediate SF responsiveness relies on the "force-from-filament" principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.


Assuntos
Asparagina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Matriz Extracelular/metabolismo , Domínios Proteicos/genética , Animais , Asparagina/química , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Feminino , Glicosilação , Células HEK293 , Humanos , Hipertensão/etiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Mutação Puntual , Polissacarídeos/química , Estresse Mecânico , Xenopus laevis
9.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177505

RESUMO

By virtue of their wide applications in transportation, healthcare, smart home, and security, development of sensors detecting mechanical stimuli, which are many force types (pressure, shear, bending, tensile, and flexure) is an attractive research direction for promoting the advancement of science and technology. Sensing capabilities of various force types based on structural design, which combine unique structure and materials, have emerged as a highly promising field due to their various industrial applications in wearable devices, artificial skin, and Internet of Things (IoT). In this review, we focus on various sensors detecting one or two mechanical stimuli and their structure, materials, and applications. In addition, for multiforce sensing, sensing mechanism are discussed regarding responses in external stimuli such as piezoresistive, piezoelectric, and capacitance phenomena. Lastly, the prospects and challenges of sensors for multiforce sensing are discussed and summarized, along with research that has emerged.

10.
Trop Anim Health Prod ; 56(1): 22, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123841

RESUMO

Warner-Bratzler Shear Force (WBSF) is a quantitative measurement of meat toughness that has great impact on the consumer acceptability of meat. This study was conducted to evaluate growth performance, carcass and meat quality characteristics, and fatty acids profile of longissimus lumborum (LL) intramuscular fat (IMF) of pigs that are genetically divergent for WBSF. Based on WBSF values of the LL from a previous study, 12 immunocastrated male pigs selected from 96 pigs were divided into two groups with high WBSF (53.28 to 42.50 N) and low WBSF (37.27 to 27.79 N). Although high-WBSF pigs tended to have improved (P = 0.08) gain-to-feed ratio, overall performance was similar between WBSF groups. High-WBSF pigs also tended to have higher (P = 0.09) cooling loss and lean percentage as well as decreased (P = 0.08) 10th-rib backfat depth than low-WBSF pigs. Loins from high-WBSF pigs tended to have lower (P = 0.07) IMF content and higher (P = 0.09) cooking loss than low-WBSF pigs. Compared to low-WBSF pigs, IMF of the LL from high-WBSF pigs had lower (P = 0.05) percentage of oleic acid and tended to have a decreased (P = 0.07) percentage of total monounsaturated fatty acids. Loins from pigs with high WBSF tended to have increased (P = 0.09) total polyunsaturated fatty acids (PUFA) content and had higher (P = 0.03) PUFA: saturated fatty acid ratio than low-WBSF pigs. Selecting pigs for pork tenderness could potentially conflict with lean growth efficiency and a healthier fatty acids profile for human consumption.


Assuntos
Ácidos Graxos , Carne de Porco , Animais , Masculino , Culinária , Ácidos Graxos/análise , Ácidos Graxos Insaturados , Fenótipo , Suínos , Carne de Porco/análise
11.
Trop Anim Health Prod ; 55(2): 119, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930426

RESUMO

Considering the economic and commercial efficiency of the beef production chain, the yield and quality of the meat produced must also be included in breeding programs. For the Nellore breed, including the polled herd, these aspects have not been much studied. The aim of this study was to estimate genetic parameters for scrotal circumference adjusted to 365 (SC365) and 450 (SC450) days of age, age at first calving (AFC), accumulated productivity (AP), stayability (STAY), longissimus muscle area (LMA), thickness of subcutaneous fat over the 12th-13th ribs (BF), thickness of subcutaneous fat over the rump (RF), and shear force measured by Warner-Bratzler shear force (WBSF) of polled Nellore cattle. Bayesian analyses were performed by adopting a linear animal model, whereas STAY analyses used the linear threshold model. Heritability estimates were 0.31 (SC365), 0.37 (SC450), 0.16 (AFC), 0.25 (AP), 0.16 (STAY), 0.30 (LMA), 0.13 (BF), 0.24 (RF), and 0.15 (WBSF), indicating moderate response to selection. Genetic and residual correlations between SC365 and SC450 were high (0.91 and 0.74, respectively), as well as the genetic correlations of AP with SC365, SC450, AFC, and STAY (0.61, 0.62, - 0.69, and 0.83, respectively). Genetic and residual correlations of WBSF with reproductive and carcass characteristics exhibited high standard deviations, however favorable. Based on the results, it is expected that in the medium term, animals with greater sexual precocity will also have greater accumulated productivity and longer permanence of females in the herd, along with superior carcass traits. However, due to the low heritabilities and small genetic associations with reproductive traits, fat thickness characteristics (BF and RF) will still require direct selection.


Assuntos
Carne , Reprodução , Animais , Bovinos/genética , Feminino , Teorema de Bayes , Fenótipo , Reprodução/genética
12.
Trop Anim Health Prod ; 55(6): 427, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041713

RESUMO

Our objective was to use measures of intake and productive performance to adjust prediction models for the carcass traits of non-castrated Nellore cattle finished in a feedlot. Individual data from 168 non-castrated male Nellore steers finished in feedlot between the years 2016-2021 were used. Descriptive statistical analyzes and Pearson correlation coefficients were performed. The outliers were tested by evaluating the studentized residuals in relation to the values predicted by the equations. Residues that were outside the range of -2.5 to 2.5 were removed. The goodness of fit of the developed equations was evaluated by the coefficients of determination (R2) and root mean square error (RMSE). Models for carcass yield, subcutaneous fat thickness, ribeye area, and shear force were adjusted. Means of 53.5% carcass yield, 4.8 mm subcutaneous fat thickness, 73 cm2 loin eye area, and 8.1 kg shear force were observed. The observed average intakes were 9.9 kg/day of dry matter, 3.3 kg/day of neutral detergent fiber content, 1.5 kg/day of crude protein, and 7.1 kg/day of total digestible nutrients. The average confinement time was 113 days, the average total weight gain was 152.2 kg and the average daily gain was 1.35 kg/day. Intake measures significantly correlated with shear force and subcutaneous fat thickness and ribeye area. Carcass yield was significantly correlated with total weight gain, feedlot time, and hot carcass weight. Measures of nutrient intake, performance, and confinement time can be used as predictors of carcass yield, ribeye area, fat thickness, and shear force of non-castrated Nellore cattle finished in a feedlot. The prediction equations for ribeye area, carcass yield, subcutaneous fat thickness, and shear force showed sufficient precision and accuracy for non-castrated Nellore cattle finished in confinement systems under tropical conditions. All equations can be used with caution to estimate carcass traits of cattle finished in a feedlot using measures of intake and productive performance.


Assuntos
Ingestão de Alimentos , Clima Tropical , Bovinos , Masculino , Animais , Ingestão de Energia , Fenótipo , Aumento de Peso , Composição Corporal
13.
Nanotechnology ; 33(37)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35679811

RESUMO

Silver nanowire films have a wide application prospect in flexible electronics, while it is a noticeable problem that the silver nanowires break due to the shear force under the mass production film cutting or extreme service conditions. In this paper, the shear fracture behaviour of silver nanowire films with different structural parameters was studied under the extreme shear failure tests. The load-displacement curve was obtained from the nano-indentation test, while the hardnessH, the elastic modulusEand the plastic properties represented by the ratio ofH3/E2of silver nanowire films with different diameters and thicknesses were calculated. On the other hand, based on the load-displacement curve, the stress-strain curve can be obtained through the finite element method simulation. The plastic properties can also be judged by the lower limit of yield strength from simulated stress-strain curve. Combined with characteristic crack propagation range, the relationship between plasticity and shear fracture was found, which was further disclosed by in-depth microstructure analysis. The results show that the better the plasticity of silver nanowire films, the stronger the resistance to shear fracture.

14.
Biotechnol Lett ; 44(11): 1347-1358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183022

RESUMO

OBJECTIVES: Cells grown in chemically defined medium are sensitive to shear force, potentially resulting in decreased cell growth. We optimized the perfusion process for HEK293 cell-based recombinant adenovirus-vectored zoster vaccine (Ad-HER) production with chemically defined medium. METHODS: We first studied the pseudo-continuous strategies in shake flasks as a mimic of the bioreactor equipped with perfusion systems. Using design of experiment (DoE) in shake flasks, we obtained the regression models between Ad-HER titer/virus input-output ratio and three production process parameters: time of infection (TOI), multiplicity of infection (MOI), and virus production pH (pH). We then confirmed the effect of Pluronic F68 (PF-68) at 3.0 g/L on HEK293 cell growth and Ad-HER production in shake flasks and a 2 L benchtop bioreactor. RESULTS: The optimized process was scale-up to a 2 L benchtop bioreactor with the PATFP perfusion system, which yielded cell density of 7.4 × 106 cells/mL and Ad-HER titer of 9.8 × 109 IFU/mL at 2 dpi, comparable to the bioreactor with a ATF2 system. CONCLUSION: This optimization strategy could be used to develop a robust process with stable cell culture performance and adenovirus titer. Increasing PF-68 concentration in chemically defined medium could protect cells from shear stress generated by perfusion system.


Assuntos
Vacina contra Herpes Zoster , Humanos , Células HEK293 , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Perfusão , Adenoviridae/genética
15.
J Biomech Eng ; 144(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789250

RESUMO

The opening of the ion channels ultimately depends on the movement and energy conversion of the microstructural organization. But the role was not yet clear how the active sound amplification function is generated by the microstructure in the cochlear characteristic spiral shape. In this paper, an analytical model of the spiral cochlea is developed to investigate the radial flow field generated by the spiral shape of the cochlea and its effect on the outer hair cell stereocilia, and to analyze the effect of the spiral shape on the micromechanics of the cochlea. The results show that the spiral shape of the cochlea exerts a radial shear force on the hair cell stereocilia by generating a radial flow field, causing the stereocilia to deflect in the radial flow field, with the maximum deflection occurring at the apex of the cochlea. This finding explains from the microscopic mechanism that cochlear spiral shape can enhance low-frequency hearing in humans, which provides a basis for further studies on the contribution of the movement of stereocilia applied by the radial flow field of lymphatic fluid to activate ion channels for auditory production.


Assuntos
Cóclea , Estereocílios , Cóclea/fisiologia , Humanos , Canais Iônicos/fisiologia , Som , Estereocílios/fisiologia
16.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560320

RESUMO

A touch interface is an important technology used in many devices, including touch panels in smartphones. Many touch panels only detect the contact position. If devices can detect shear force in addition to the contact position, various touch interactions are possible. We propose a two-step recognition method for recognizing the pressing position and shear force using active acoustic sensing, which transmits acoustic signals to an object and recognizes the state of the object by analyzing its response. Specifically, we attach a contact speaker transmitting an ultrasonic sweep signal and a contact microphone receiving ultrasonic waves to a plate of gel. The propagation characteristics of ultrasonic waves differ due to changes in the shape of the gel caused by the user's actions on the gel. This system recognizes the pressing position and shear force on the basis of the difference in acoustic characteristics. An evaluation of our method involving a user-independent model confirmed that four pressing positions were recognized with an F1 score of 85.4%, and four shear-force directions were recognized with an F1 score of 69.4%.


Assuntos
Acústica , Ultrassom
17.
J Biol Chem ; 295(41): 14065-14083, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763969

RESUMO

Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.


Assuntos
Membrana Celular , Modelos Biológicos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Adesão Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
18.
Nanotechnology ; 32(26)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725678

RESUMO

Mass production of defect-free and large-lateral-size 2D materials via cost-effective methods is very important. Recently, shear exfoliation has shown great promise for large-scale production due to its simple operation, environmental-benignity and wide adaptability. However, a long-standing challenge is that with the production of more nanosheets, a ceiling yield and shattered products are encountered, which significantly limits their wider application. The method and efficiency of energy transfer in fluid is undoubtedly the key point in determining exfoliation efficiency, yet its in-depth mechanism has not yet been described. Thus, a thorough investigation of turbulence energy transfer is critically necessary. Herein, we identify two main factors that critically determine the exfoliation yield and provide a statistical analysis of the relationship between these factors and the exfoliation yield. In the initial shearing process, the coexistence of the 2D nanosheets and raw particles is the dominant factor; as time passes, the dimensional change of raw materials gradually has a greater influence on the energy transfer. These factors together lead to attenuated efficiency and a power function relationship between yield and exfoliation time. This investigation gives a statistical explanation of shear exfoliation technology for 2D material preparation and provides valuable insights for mechanical exfoliating high-quality 2D materials.

19.
Sensors (Basel) ; 21(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206438

RESUMO

Sensing of the interaction forces at fingertips is of great value in assessment and rehabilitation therapy. Current force sensors are not compliant to the fingertip tissue and result in loss of touch sensation of the user. This work shows the development and characterization of a flexible fully-3D-printed piezoresistive shear and normal force sensor that uses the mechanical deformation of the finger tissue. Two prototypes of the sensing structure are evaluated using a finite element model and a measurement setup that applies normal and shear forces up to 10 N on a fingertip phantom placed inside the sensing structure, which is fixed to prevent slippage. Furthermore, the relation between strain (rate) and resistance of the conductive TPU, used for the strain gauges, is characterized. The applied normal and shear force components of the 3D-printed sensing structure can be partly separated. FEM analysis showed that the output of the sensor is largely related to the sensor geometry and location of the strain gauges. Furthermore, the conductive TPU that was used has a negative gauge factor for the strain range used in this study and might cause non-linear behaviors in the sensor output.


Assuntos
Dedos , Tato , Condutividade Elétrica , Fenômenos Mecânicos , Impressão Tridimensional
20.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445532

RESUMO

Flexible electronics with continuous monitoring ability a extensively preferred in various medical applications. In this work, a flexible pressure sensor based on porous graphene (PG) is proposed for continuous cardiovascular status monitoring. The whole sensor is fabricated in situ by ink printing technology, which grants it the potential for large-scale manufacture. Moreover, to enhance its long-term usage ability, a polyethylene terephthalate/polyethylene vinylacetate (PET/EVA)-laminated film is employed to protect the sensor from unexpected shear forces on the skin surface. The sensor exhibits great sensitivity (53.99/MPa), high resolution (less than 0.3 kPa), wide detecting range (0.3 kPa to 1 MPa), desirable robustness, and excellent repeatability (1000 cycles). With the assistance of the proposed pressure sensor, vital cardiovascular conditions can be accurately monitored, including heart rate, respiration rate, pulse wave velocity, and blood pressure. Compared to other sensors based on self-supporting 2D materials, this sensor can endure more complex environments and has enormous application potential for the medical community.


Assuntos
Sistema Cardiovascular , Grafite/química , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto , Pressão Sanguínea , Desenho de Equipamento , Frequência Cardíaca , Humanos , Tinta , Monitorização Fisiológica/métodos , Polietilenotereftalatos/química , Polivinil/química , Porosidade , Análise de Onda de Pulso/instrumentação , Análise de Onda de Pulso/métodos , Respiração , Pele , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA