Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Med Sci ; 21(10): 1929-1944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113893

RESUMO

Fine particulate matter (PM2.5) can damage airway epithelial barriers. The anion transport system plays a crucial role in airway epithelial barriers. However, the detrimental effect and mechanism of PM2.5 on the anion transport system are still unclear. In this study, airway epithelial cells and ovalbumin (OVA)-induced asthmatic mice were used. In transwell model, the adenosine triphosphate (ATP)-induced transepithelial anion short-circuit current (Isc) and airway surface liquid (ASL) significantly decreased after PM2.5 exposure. In addition, PM2.5 exposure decreased the expression levels of P2Y2R, CFTR and cytoplasmic free-calcium, but ATP can increase the expressions of these proteins. PM2.5 exposure increased the levels of Th2-related cytokines of bronchoalveolar lavage fluid, lung inflammation, collagen deposition and hyperplasisa of goblet cells. Interestingly, the administration of ATP showed an inhibitory effect on lung inflammation induced by PM2.5. Together, our study reveals that PM2.5 impairs the ATP-induced transepithelial anion Isc through downregulating P2Y2R/CFTR pathway, and this process may participate in aggravating airway hyperresponsiveness and airway inflammation. These findings may provide important insights on PM2.5-mediated airway epithelial injury.


Assuntos
Asma , Regulador de Condutância Transmembrana em Fibrose Cística , Material Particulado , Receptores Purinérgicos P2Y2 , Animais , Camundongos , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2Y2/genética , Asma/metabolismo , Asma/patologia , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/imunologia , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Trifosfato de Adenosina/metabolismo , Ovalbumina/imunologia , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia
2.
J Biol Chem ; 298(5): 101847, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314195

RESUMO

Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.


Assuntos
Capsaicina , Colite , Canais de Cátion TRPV , Amilorida , Animais , Capsaicina/farmacologia , Cloretos/metabolismo , Colite/tratamento farmacológico , Colo/metabolismo , Glucose , Camundongos , Camundongos Knockout , Ouabaína , Sódio/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores
3.
Pflugers Arch ; 475(2): 249-266, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044064

RESUMO

Elevated levels of the intracellular second messenger cAMP can stimulate intestinal oxalate secretion however the membrane transporters responsible are unclear. Oxalate transport by the chloride/bicarbonate (Cl-/HCO3-) exchanger Slc26a6 or PAT-1 (Putative Anion Transporter 1), is regulated via cAMP when expressed in Xenopus oocytes and cultured cells but whether this translates to the native epithelia is unknown. This study investigated the regulation of oxalate transport by the mouse intestine focusing on transport at the apical membrane hypothesizing PAT-1 is the target of a cAMP-dependent signaling pathway. Adopting the Ussing chamber technique we measured unidirectional 14C-oxalate and 36Cl- flux ([Formula: see text] and [Formula: see text]) across distal ileum, cecum and distal colon, employing forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) to trigger cAMP production. FSK/IBMX initiated a robust secretory response by all segments but the stimulation of net oxalate secretion was confined to the cecum only involving activation of [Formula: see text] and distinct from net Cl- secretion produced by inhibiting [Formula: see text]. Using the PAT-1 knockout (KO) mouse we determined cAMP-stimulated [Formula: see text] was not directly dependent on PAT-1, but it was sensitive to mucosal DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid), although unlikely to be another Cl-/HCO3- exchanger given the lack of trans-stimulation or cis-inhibition by luminal Cl- or HCO3-. The cAMP-activated oxalate efflux was reliant on CFTR (Cystic Fibrosis Transmembrane conductance Regulator) activity, but only in the presence of PAT-1, leading to speculation on the involvement of a multi-transporter regulatory complex. Further investigations at the cellular and molecular level are necessary to define the mechanism and transporter(s) responsible.


Assuntos
Ceco , Proteínas de Membrana Transportadoras , Animais , Camundongos , 1-Metil-3-Isobutilxantina/farmacologia , 1-Metil-3-Isobutilxantina/metabolismo , Transporte de Íons , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Ceco/metabolismo , Cloretos/metabolismo , Oxalatos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bicarbonatos/metabolismo , Transportadores de Sulfato/metabolismo , Antiporters/metabolismo
4.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896465

RESUMO

The transient characteristics of wind farms in groups are quite different; in addition, there is a strong coupling between the wind farms and the grid, and these factors make the fault analysis of the grid with wind farm groups complicated. In order to solve this problem, a mathematical model of the converter is established based on the input-output external characteristics of the converter, and a transient model of a doubly fed wind turbine (DFIG) is presented considering the influence of the low-voltage ride-through control (LVRT) of the converter, and the effect mechanism of the LVRT strategy on the short-circuit current is analyzed. Finally, a short-circuit current calculation model of a doubly fed wind turbine with low-voltage crossing control is established. The interaction mechanism between wind farms during the fault is analyzed, and a short-circuit current calculation method of doubly fed wind farm groups is proposed. RTDS is used to verify the accuracy of the proposed short-circuit current calculation method for doubly fed field groups. On this basis, a method of power grid fault analysis after doubly fed field group access is discussed and analyzed.

5.
Angew Chem Int Ed Engl ; 62(52): e202316495, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37948070

RESUMO

Non-fullerene acceptors have shown great promise for organic solar cells (OSCs). However, challenges in achieving high efficiency molecular system with conformational unicity and effective molecular stacking remain. In this study, we present a new design of non-fused tetrathiophene acceptor R4T-1 via employing the encapsulation of tetrathiophene with macrocyclic ring. The single crystal structure analysis reveals that cyclic alkyl side chains can perfectly encapsulate the central part of molecule and generate a conformational stable and planar molecular backbone. Whereas, the control 4T-5 without the encapsulation restriction displays cis- and twisted conformation. As a result, R4T-1 based OSCs achieved an outstanding power conversion efficiency (PCE) exceeding 15.10 % with a high short-circuit current density (Jsc ) of 25.48 mA/cm2 , which is significantly improved by ≈30 % in relative to that of the control. Our findings demonstrate that the macrocyclic encapsulation strategy could assist fully non-fused electron acceptors (FNEAs) to achieve a high photovoltaic performance and pave a new way for FNEAs design.

6.
Am J Physiol Cell Physiol ; 323(4): C1061-C1069, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036449

RESUMO

Professor Hans H. Ussing (1911-2000) was one of the founding members of the field of epithelial cell biology. He is most famous for the electrophysiological technique that he developed to measure electrogenic ion flux across epithelial tissues. Ussing-style electrophysiology has been applied to multiple tissues and has informed fields as diverse as amphibian biology and medicine. In the latter, this technique has contributed to a basic understanding of maladies such as hypertension, polycystic kidney disease, cystic fibrosis, and diarrheal diseases to mention but a few. In addition to this valuable contribution to biological methods, Prof. Ussing also provided strong evidence for the concept of active transport several years before the elucidation of Na+K+ATPase. In addition, he provided cell biologists with the important concept of polarized epithelia with specific and different transporters found in the apical and basolateral membranes, thus providing these cells with the ability to conduct directional, active and passive transepithelial transport. My studies have used Ussing chamber electrophysiology to study the toad urinary bladder, an amphibian cell line, renal cell lines, and, most recently, choroid plexus cell lines. This technique has formed the basis of our in vitro mechanistic studies that are used in an iterative manner with animal models to better understand disease progress and treatment. I was honored to be invited to deliver the 2022 Hans Ussing Lecture sponsored by the Epithelial Transport Group of the American Physiological Society. This manuscript is a version of the material presented in that lecture.


Assuntos
Adenosina Trifosfatases , Anfíbios , Animais , Transporte Biológico/fisiologia , Encéfalo , Epitélio/fisiologia , Rim , Masculino , Mamíferos
7.
FASEB J ; 35(5): e21606, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908679

RESUMO

Na+ -K+ -2Cl- cotransporter-1 (NKCC1) facilitates basolateral K+ and Cl- uptake, supporting their efflux across mucosal membranes of colonic epithelial cells. NKCC1 activity has also been shown to be critical for electrogenic K+ secretion induced by aldosterone, which is known to stimulate large-conductance K+ (BK) channel expression in mucosal membranes. This study was aimed to (1) identify whether aldosterone enhances NKCC1 expression specifically to support BK-mediated K+ secretion and (2) to determine whether increased NKCC1 supports electrogenic Cl- secretion in parallel to K+ secretion. Dietary Na+ depletion was used to induce secondary hyperaldosteronism in rats, or aldosterone was administered ex vivo to rat distal colonic mucosae. NKCC1-dependent electrogenic K+ or Cl- secretion was measured as a function of short circuit current (ISC ). qRT-PCR, western blot, and immunofluorescence analyses were performed using standard techniques. Aldosterone enhanced NKCC1 and BKα expression and electrogenic K+ secretion in the distal colon, which was inhibited by either serosal bumetanide (NKCC1 inhibitor) or mucosal iberiotoxin (IbTX; BK channel blocker), but not TRAM-34 (IK channel blocker). Expression of NKCC1 and BKα proteins was enhanced in crypt cells of hyper-aldosterone rats. However, neither NKCC1-dependent Cl- secretion nor CFTR (apical Cl- channel) expression was enhanced by aldosterone. We conclude that aldosterone enhances NKCC1 to support BK-mediated K+ secretion independently of Cl- secretion in the distal colon. The regulation of NKCC1 expression/K+ secretion by aldosterone may be a therapeutic target in treating gastrointestinal disorders associated with alterations in colonic K+ transport, such as colonic pseudo-obstruction, and hyperkalemia associated with renal disease.


Assuntos
Aldosterona/farmacologia , Colo/metabolismo , Hiperaldosteronismo/patologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Colo/efeitos dos fármacos , Feminino , Hiperaldosteronismo/metabolismo , Transporte de Íons , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Ratos , Ratos Sprague-Dawley , Membro 2 da Família 12 de Carreador de Soluto/genética
8.
BMC Gastroenterol ; 22(1): 234, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549670

RESUMO

BACKGROUND: Aberrations in cyclooxygenase and lipoxygenase (LOX) pathways in non-neoplastic, normal appearing mucosa from patients with colorectal neoplasia (CRN), could hypothetically qualify as predisposing CRN-markers. METHODS: To test this hypothesis, biopsies were obtained during colonoscopy from macroscopically normal colonic mucosa from patients with and without CRN. Prostaglandin E2 (PGE2) receptors, EP1-4, were examined in Ussing-chambers by exposing biopsies to selective EP receptor agonists, antagonists and PGE2. Furthermore, mRNA expression of EP receptors, prostanoid synthases and LOX enzymes were evaluated with qPCR. RESULTS: Data suggest that PGE2 binds to both high and low affinity EP receptors. In particular, PGE2 demonstrated EP4 receptor potency in the low nanomolar range. Similar results were detected using EP2 and EP4 agonists. In CRN patients, mRNA-levels were higher for EP1 and EP2 receptors and for enzymes prostaglandin-I synthase, 5-LOX, 12-LOX and 15-LOX. CONCLUSIONS: In conclusion, normal appearing colonic mucosa from CRN patients demonstrates deviating expression in eicosanoid pathways, which might indicate a likely predisposition for early CRN development and furthermore that PGE2 potently activates high affinity EP4 receptor subtypes, supporting relevance of testing EP4 antagonists in colorectal neoplasia management.


Assuntos
Neoplasias Colorretais , Receptores de Prostaglandina E Subtipo EP4 , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , RNA Mensageiro/análise , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética
9.
Br Poult Sci ; 63(1): 91-97, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34297639

RESUMO

1. Myo-inositol (MI) is an essential metabolite for cell function in animals and humans. The aim of this study was to characterise the transport mechanism of MI in the small intestine of laying hens as there is a lack of knowledge about the MI uptake mechanisms. The hypothesised secondary active, cation coupled transport of MI was assessed by electrophysiological measurements with Ussing chambers, and was compared to the electrophysiology of glucose transport.2. Twenty-six laying hens were used. The potential ion-dependent transport was tested in tissue of the small intestine. Barrier function of the tissue was shown by determining the transepithelial resistance. During the experiments, mucosal and serosal buffers were sampled to measure time-dependent changes in MI concentrations. Samples from eight hens were further used for Western blot analyses of the jejunal apical membranes.3. Active MI transport, indicated by changes in the short circuit current after MI addition, could not be demonstrated in the Ussing chambers experiments. MI was further not detectable in the serosal buffer, nor in the lysates of mucosal tissue cytoplasm nor lipids. Thus, there was no evidence for a MI transport or absorption. However, Western blot analyses of the jejunal apical membrane revealed signals indicated the expression of the MI transport proteins SMIT-1 and SMIT-2.4. In conclusion, the MI transport process in the chicken intestine is more complex than it was presumed and is probably influenced by still unknown regulations or metabolic processes.


Assuntos
Galinhas , Intestino Delgado , Animais , Transporte Biológico , Feminino , Inositol , Jejuno
10.
Toxicol Appl Pharmacol ; 421: 115543, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872679

RESUMO

Nimodipine is a clinically used dihydropyridine L-type calcium channel antagonist that effectively inhibits transmembrane Ca2+ influx following the depolarization of smooth muscle cells, but the detailed effect on smooth muscle contraction is not fully understood. Ca2+-activated Cl- channels (CaCCs) in vascular smooth muscle cells (VSMCs) may regulate vascular contractility. We found that nimodipine can inhibit transmembrane protein 16A (TMEM16A) activity in a concentration-dependent manner by cell-based fluorescence-quenching assay and short-circuit current analysis, with an IC50 value of ~5 µM. Short-circuit current analysis also showed that nimodipine prevented Ca2+-activated Cl- current in both HT-29 cells and mouse colonic epithelia accompanied by significantly decreased cytoplasmic Ca2+ concentrations. In the absence of extracellular Ca2+, nimodipine still exhibited an inhibitory effect on TMEM16A/CaCCs. Additionally, the application of nimodipine to CFTR-expressing FRT cells and mouse colonic mucosa resulted in mild activation of CFTR-mediated Cl- currents. Nimodipine inhibited basolateral CCh-activated K+ channel activity with no effect on Na+/K+-ATPase activity. Evaluation of intestinal smooth muscle contraction showed that nimodipine inhibits intestinal smooth muscle contractility and frequency, with an activity pattern that was similar to that of non-specific inhibitors of CaCCs. In aortic smooth muscle, the expression of TMEM16A in thoracic aorta is higher than that in abdominal aorta, corresponding to stronger maximum contractility in thoracic aorta smooth muscle stimulated by phenylephrine (PE) and Eact. Nimodipine completely inhibited the contraction of aortic smooth muscle stimulated by Eact, and partially inhibited the contraction stimulated by PE. In summary, the results indicate that nimodipine effectively inhibits TMEM16A/CaCCs by reduction transmembrane Ca2+ influx and directly interacting with TMEM16A, explaining the mechanisms of nimodipine relaxation of intestinal and aortic smooth muscle contraction and providing new targets for pharmacological applications.


Assuntos
Anoctamina-1/antagonistas & inibidores , Bloqueadores dos Canais de Cálcio/toxicidade , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso/efeitos dos fármacos , Nimodipina/toxicidade , Vasoconstrição/efeitos dos fármacos , Animais , Anoctamina-1/metabolismo , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células HT29 , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA