RESUMO
BACKGROUND: Influenza caused by the H1N1 virus still affects human health. There is currently no effective strategy against H1N1 virus infection. The present study is to evaluate the mechanism of Shufeng Jiedu Capsule (SFJDC) in the treatment of H1N1 infection using an integrated systems pharmacology approach and experimental validation. SFJDC is recommended for the treatment of H1N1 infection in traditional Chinese medicine (TCM), whose mechanism of action is not precise. METHODS: We systematically analyzed SFJDC using a systematic pharmacology and ADME screening model, and predicted effective targets using systematic drug targeting (SysDT) algorithm. Subsequently, the network of interactions between compounds and targets was built to help in the discovery of new drugs. In addition, the pathway of molecular action was determined by using enrichment analysis from the predicted targets. what is more, molecular docking also applied to predict the specific binding sites and binding capacity of active compounds and related targets, which validated the results of the compounds-targets network (C-T network). Finally, the mechanism of SFJDC effect on autophagy and virus replication in H1N1 virus-infected RAW264.7 mouse macrophage cells was experimentally verified. RESULTS: The systematic pharmacology results suggested that 68 candidate compounds were obtained from SFJDC, which interacted with 74 different targets related to inflammation and the immune system. The CCK-8 results showed that different concentrations of SFJDC serum had no significant inhibitory effect on the viability of RAW264.7 cells. LC3-II was significantly increased after virus infection compared to the control group, while it was inhibited by different concentrations of SFJDC serum. H1N1 virus nucleocapsid protein (NP protein) was significantly reduced in the high concentration group, Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and viral M1 gene were significantly reduced compared to the H1N1 group. CONCLUSIONS: The integrated systemic pharmacological approach and experimental validation not only provide a precise explanation of the molecular mechanism of SFJDC in the treatment of H1N1 infection but also provide valuable clues for the development of novel drug strategies to control the H1N1 infection.
Assuntos
Medicamentos de Ervas Chinesas , Vírus da Influenza A Subtipo H1N1 , Humanos , Animais , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologiaRESUMO
ShuFeng JieDu capsule (SFJDC), a traditional Chinese medicine, has been recommended for the treatment of COVID-19 infections. However, the pharmacological mechanism of SFJDC still remains vague to date. The active ingredients and their target genes of SFJDC were collected from TCMSP. COVID-19 is a type of Novel Coronavirus Pneumonia (NCP). NCP-related target genes were collected from GeneCards database. The ingredients-targets network of SFJDC and PPI networks were constructed. The candidate genes were screened by Venn diagram package for enrichment analysis. The gene-pathway network was structured to obtain key target genes. In total, 124 active ingredients, 120 target genes of SFJDC and 251 NCP-related target genes were collected. The functional annotations cluster 1 of 23 candidate genes (CGs) were related to lung and Virus infection. RELA, MAPK1, MAPK14, CASP3, CASP8 and IL6 were the key target genes. The results suggested that SFJDC cloud be treated COVID-19 by multi-compounds and multi-pathways, and this study showed that the mechanism of traditional Chinese medicine (TCM) in the treatment of disease from the overall perspective.
Assuntos
Antivirais/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Pneumonia Viral/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Antivirais/química , COVID-19 , Cápsulas/farmacologia , Caspase 3/genética , Caspase 8/genética , Infecções por Coronavirus/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Pandemias , Pneumonia Viral/genética , Mapas de Interação de Proteínas/genética , SARS-CoV-2 , Fator de Transcrição RelA/genética , Tratamento Farmacológico da COVID-19RESUMO
BACKGROUND/AIMS: Acute respiratory tract infection (ARTI) is the most common reason for outpatient physician office visits. Although powerful and significant in the treatment of infections, antibiotics used for ARTI inappropriately have been an important contributor to antibiotic resistance. We previously reported that Shufeng Jiedu Capsule (SJC) can effectively amplify anti-inflammatory signaling during infection. In this study, we aimed to systematically explore its composition and the mechanism of its effects in ARTI. METHODS: Pseudomonas aeruginosa (PAK) strain was used to generate a mouse model of ARTI, which were then treated with different drugs or compounds to determine the corresponding anti-inflammatory roles. High-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry. was conducted to detect the chemical compounds in SJC. RNAs from the lung tissues of mice were prepared for microarray analysis to reveal globally altered genes and the pathways involved after SJC treatment. RESULTS: SJC significantly inhibited the expression and secretion of inflammatory factors from PAK-induced mouse lung tissues or lipopolysaccharide-induced peritoneal macrophages. Verbenalin, one of the bioactive compounds identified in SJC, also showed notable anti-inflammatory effects. Microarray data revealed numerous differentially expressed genes among the different treatment groups; here, we focused on studying the role of GPR18. We found that the anti-inflammatory role of verbenalin was attenuated in GPR18 knockout mice compared with wild-type mice, although no statistically significant difference was observed in the untreated PAK-induced mice types. CONCLUSION: Our data not only showed the chemical composition of SJC, but also demonstrated that verbenalin was a significant anti-inflammatory compound, which may function through GPR18.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos Iridoides/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cápsulas/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/análise , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Inflamação/patologia , Glicosídeos Iridoides/química , Glicosídeos Iridoides/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Background: Although many acute exacerbations of COPD (AECOPD) are triggered by non-bacterial causes, they are often treated with antibiotics. Preliminary research suggests that the Chinese herbal medicine "Shufeng Jiedu" (SFJD), may improve recovery and therefore reduce antibiotic use in patients with AECOPD. Aims: To assess the feasibility of conducting a randomised placebo-controlled clinical trial of SFJD for AECOPD in UK primary care. Methods: GPs opportunistically recruited patients experiencing an AECOPD. Participants were randomised 1:1 to usual care plus SFJD or placebo for 14 days. Participants, GPs and research nurses were blinded to treatment allocation. GPs could prescribe immediate, delayed or no antibiotics, with delayed prescribing encouraged where appropriate. Participants were asked to complete a participant diary, including EXACT-PRO and CAT™ questionnaires for up to 4 weeks. Outcomes included recruitment rate and other measures of study feasibility described using only descriptive statistics and with no formal comparisons between groups. We also conducted qualitative interviews with recruited and non-recruited COPD patients and clinicians, analysed using framework analysis. Results: Over 6 months, 19 participants (6 SFJD, 13 placebo) were recruited. Sixteen (84%) participants returned diaries or provided a diary by recall. Overall, 1.3 participants were recruited per 1,000 patients on the COPD register per month open. Median duration of treatment was 9.8 days in the intervention group vs 13.3 days in the placebo group. The main reason for discontinuation in both groups was perceived side-effects. in both groups. Point estimates for both the EXACT-PRO and CAT™ outcomes suggested possible small benefits of SFJD. Most patients and clinicians were happy to try SFJD as an alternative to antibiotics for AECOPD. Recruitment was lower than expected because of the short recruitment period, the lower incidence of AECOPD during the COVID-19 pandemic, patients starting antibiotics from "rescue packs" before seeing their GP, and workforce challenges in primary care. Conclusion: Recruitment was impaired by the COVID-19 pandemic. Nevertheless, we were able to demonstrate the feasibility of recruiting and randomising participants and identified approaches to address recruitment challenges such as including the trial medication in COPD patients' "rescue packs" and delegating recruitment to a central trials team. Clinical Trial Registration: Identifier, ISRCTN26614726.
RESUMO
Shufeng Jiedu Capsule (SFJDC), composed of eight herbs, is a big brand traditional Chinese medicine (TCM) for the treatment of different respiratory tract infectious diseases with good clinical efficacy and few side effects. It is clinically applied to acute upper respiratory tract infection(URI), influenza, acute exacerbation of chronic obstructive pulmonary disease (AECOPD), community-acquired pneumonia(CAP) and other diseases, due to its antibacterial, antiviral, anti-inflammatory, immunoregulatory and antipyretic activities. In particular, it has shown good clinical effects for COVID-19, and was included in the fourth to tenth editions of the 'Diagnosis and Treatment Protocol for COVID-19 (Trial)' by the National Health Commission. In recent years, studies on the secondary development which focus on the basic and clinical application of SFJDC have been widely reported. In this paper, chemical components, pharmacodynamic material basis, mechanisms, compatibility rule and clinical application were systematically summarized, in order to provide theoretical and experimental basis for further research and clinical application of SFJDC.
RESUMO
Patients infected with the Omicron variant of SARS-CoV-2 mainly develop mild COVID-19, manifesting as upper respiratory symptoms, fatigue, and fever. Shufeng Jiedu capsule (SFJDC), a traditional Chinese medicine indicated for treatment of upper respiratory infections in China, was tested for its efficacy and safety in treatment of an Omicron infection at a mobile cabin hospital in response to an outbreak of COVID-19 in Shanghai, China in April 2022. In this open-label, randomized controlled trial, patients in the control group received best supportive care, while those in the test group received additional SFJDC therapy for 7 days. SFJDC markedly alleviated patients' symptoms including a sore throat, coughing, fatigue, and a fever after 7 days of treatment. The virus negative time was significantly shorter in the SFJDC treatment group, but there were no obvious differences in the virus negative rate between the two groups at the end of the 7-day follow-up. These results suggest that patients with the Omicron infection may benefit from SFJDC treatment. Double-blind, randomized controlled trials are warranted to comprehensively evaluate the efficacy and safety of SFJDC in a large cohort study in the future.
Assuntos
COVID-19 , SARS-CoV-2 , China , Estudos de Coortes , Medicamentos de Ervas Chinesas , Fadiga , Humanos , Medicina Tradicional Chinesa , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
The outbreak and rapid spread of coronavirus disease 2019 (COVID-19) poses a huge threat to human health and social stability. Shufeng Jiedu capsule (SFJDC), a patented herbal drug composed of eight medicinal plants, is used to treat different viral respiratory tract infectious diseases. Based on its antiviral, anti-inflammatory, and immunoregulatory activities in acute lung injury, SFJDC can be effectively used as a treatment for COVID-19 patients according to the diagnosis and treatment plan issued in China and existing clinical data. SFJDC has been recommended in 15 therapeutic regimens for COVID-19 in China. This review summarizes current data on the ingredients, chemical composition, pharmacological properties, clinical efficacy, and potential therapeutic effect of SFJDC on COVID-19, to provide a theoretical basis for its anti-viral mechanism and the clinical treatment of COVID-19.
Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Anti-Inflamatórios , Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , SARS-CoV-2RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Shufeng Jiedu capsule (SFJDC) is a pure form of traditional Chinese medicine (TCM) that contains eight medicinal plants. Known for its anti-inflammatory and antipyretic effects, it is mostly used to treat upper respiratory tract infections and other infectious diseases, such as colds, pharyngitis, laryngitis, and tonsillitis. Both acute lung injury (ALI) and COVID-19 are closely related to lung damage, primarily manifesting as lung inflammation and epithelial cell damage. However, whether SFJDC can improve ALI and by what mechanism remain unclear. The purpose of this study was to explore whether SFJDC could be used as a prophylactic treatment for COVID-19 by improving acute lung injury. AIM OF THE STUDY: The purpose of this study was to determine whether SFJDC could protect against ALI caused by lipopolysaccharide (LPS), and we wanted to determine how SFJDC reduces inflammation and apoptosis pharmacologically and molecularly. MATERIALS AND METHODS: Preadministering SFJDC at 0.1 g/kg, 0.3 g/kg, or 0.5 g/kg for one week was followed by 5 mg/kg LPS to induce ALI in mice. Observations included the study of lung histomorphology, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) secretion, as well as the ratio of lung wet/dry weights. In addition, RAW264.7 cells were treated for 24 h with 1 µg/mL LPS after being pretreated for 1 h with 0.5 mg/mL SFJDC. In the samples, we detected TNF-α, IL-1ß, and IL-6. Cell apoptosis was detected by stimulating A549 cells for 24 h with RAW264.7 supernatant. Both in vitro and in vivo, the levels of A2A adenosine receptor (A2AAR), PKA, IκB, p-IκB, NF-κB P65 (P65), p-NF-κB P65 (p-P65), cleaved caspases-3 (Cc3), Bcl-2 associated X protein (Bax), and B-cell lymphoma-2 (Bcl-2) proteins were determined using Western blot analysis. RESULTS: Lung tissue morphology was improved as SFJDC decreased cytokine secretion, the ratio of lung wet/dry weights, and lung tissue secretion of proinflammatory cytokines. The expression of A2AAR was increased by SFJDC, and the phosphorylation of NF-κB was inhibited. TUNEL staining and flow cytometry showed that SFJDC inhibited apoptosis by reducing the expression of Cc3 and the ratio of Bax/Bcl-2. CONCLUSIONS: According to the results of this study, SFJDC can reduce inflammation and inhibit apoptosis. A2AAR activation and regulation of NF-κB expression are thought to make SFJDC anti-inflammatory and anti-apoptotic. A wide range of active ingredients may result in an anti-inflammatory and antipyretic effect with SFJDC.
Assuntos
Lesão Pulmonar Aguda , COVID-19 , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios , Apoptose , Medicamentos de Ervas Chinesas , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , NF-kappa B/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P1/uso terapêutico , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Introduction: Shufeng Jiedu capsule (SFJD) is a commonly used Chinese patent medicine in China. Some studies have reported that SFJD has therapeutic effects in patients diagnosed with COVID-19. This systematic review aimed to critically evaluate the efficacy and safety of SFJD combined with western medicine (WM) for treating COVID-19. Methods: A literature search by using WHO COVID-19 database, PubMed, Embase, Cochrane Library, the Web of Science, CKNI, Wanfang, VIP, SinoMed, and clinical trial registries was conducted, up to 1 August 2022. Randomized controlled trials (RCTs), non-RCTs, cohort studies and case series of SFJD combined with WM for COVID-19 were included. Literature screening, data extraction, and quality assessment were performed independently by two reviewers in line with the same criteria. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to assess the certainty of evidence. Meta-analyses were performed with Revman 5.3 if possible. The descriptive analysis was conducted when the studies could not be meta-analyzed. Results: Totally 10 studies with 1,083 patients were included. Their methodological quality were moderate. The results demonstrated that compared to WM group, SFJD + WM group remarkably increased the nucleic acid negative conversion rate (RR = 1.40, 95%CI: 1.07-1.84), total effective rate (RR = 1.18, 95%CI: 1.07-1.31), cure rate (RR = 4.06, 95%CI: 2.19-7.53), and the chest CT improvement rate (RR = 1.19, 95%CI: 1.08-1.31), shorten nucleic acid negative conversion time (MD = -0.70, 95%CI: -1.14 to -0.26), reduced the clinical symptom disappearance time (fever, diarrhea, cough, fatigue, pharyngalgia, nasal congestion, and rhinorrhea), as well as improved the levels of laboratory outcomes (CRP, IL-6, Lym, and Neu). Additionally, the incidence of adverse reactions did not exhibit any statistically significant difference between SFJD + WM group and WM group. Conclusion: SFJD combined with WM seems more effective than WM alone for the treatment of COVID-19. However, more well-designed RCTs still are warranted. Systematic review registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022306307].
RESUMO
Background: The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. Methods: Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. Results: A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. Conclusion: The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.
RESUMO
Pneumonia associated with the 2019 novel coronavirus (2019-nCoV) is continuously and rapidly circulating at present. No effective antiviral treatment has been verified thus far. We report here the clinical characteristics and therapeutic procedure for four patients with mild or severe 2019-nCoV pneumonia admitted to Shanghai Public Health Clinical Center. All the patients were given antiviral treatment including lopinavir/ritonavir (Kaletra®), arbidol, and Shufeng Jiedu Capsule (SFJDC, a traditional Chinese medicine) and other necessary support care. After treatment, three patients gained significant improvement in pneumonia associated symptoms, two of whom were confirmed 2019-nCoV negative and discharged, and one of whom was virus negative at the first test. The remaining patient with severe pneumonia had shown signs of improvement by the cutoff date for data collection. Results obtained in the current study may provide clues for treatment of 2019-nCoV pneumonia. The efficacy of antiviral treatment including lopinavir/ritonavir, arbidol, and SFJDC warrants further verification in future study.
Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Indóis/uso terapêutico , Lopinavir/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Ritonavir/uso terapêutico , Adulto , COVID-19 , China , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem , Tratamento Farmacológico da COVID-19RESUMO
INTRODUCTION: The novel coronavirus pneumonia that broke out in 2019 has become a global epidemic. According to the diagnosis and treatment plan issued in China and the existing clinical data, Shufeng Jiedu (SFJD) Capsule can be effectively used in the treatment of COVID-19 patients. This study aimed to explore its mechanism of action by network pharmacology and molecular docking technology. METHODS: The Chinese Medicine System Pharmacology Analysis Platform (TCMSP), a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM), the Encyclopedia of Traditional Chinese Medicine (ETCM) and related literature records were used to search the composition and main active compounds of SFJD, and to screen out the targets of drug components. Disease-associated genes were obtained by the Human Gene Database (GeneCards), the Human Online Mendelian Inheritance Platform (OMIM) and the DisGeNET database, and the co-targeted genes/proteins as targets of both SFJD and COVID-19 were selected by the Comparative Toxicogenomics Database (CTD). Co-targeted genes/proteins were analyzed by STRING, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Reactome for proteins to protein interaction (PPI), pathway and GO (gene ontology) enrichment, and predicted by AutoDock for their high-precision docking simulation. In addition, the therapeutic effect for SFJD treatment on COVID-19 was validated by the Chinese medicine anti-novel coronavirus pneumonia drug effect prediction and analysis platform (TCMCOVID). RESULTS: Screening resulted in 163 compounds and 463 targeted genes. The PPI core network contains 76 co-targeted proteins. The Reactome pathways were enriched in signaling by interleukins, immune system, etc. Finally, 6 key proteins of TNF, IL-10, IL-2, IL-6, STAT1 and CCL2 were selected and successfully docked with 4 active ingredients of quercetin, luteolin, wogonin and kaempferol. CONCLUSION: SFJD may play a role in the prevention and treatment of COVID-19 through multiple active compounds acting on multiple targets and then multiple pathways.
RESUMO
The outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-caused pneumonia (Coronavirus disease -19, COVID-19), has resulted in a global health emergency. However, there is no vaccine or effective antiviral treatment against the newly emerged coronavirus and identifying the available therapeutics as soon as possible is critical for the response to the spread of SARS-CoV-2. Shufeng Jiedu Capsule (SFJDC), a well-known prescription of Traditional Chinese Medicine (TCM) in China, has been widely used in treating upper respiratory tract infections and acute lung injury, owing to its immunomodulatory and anti-inflammatory effects. Despite the definite evidence of effective use of SFJDC in the diagnosis and treatment of pneumonia caused by SARS-CoV-2, the underlying action mechanism remains unknown. Currently, a systematic study integrated with absorption, distribution, metabolism and excretion (ADME) evaluation, target prediction, network construction and functional bioinformatics analyses is proposed to illustrate the potential immune and anti-inflammatory mechanisms of SFJDC against SARS-CoV-2. Additionally, to further validate the reliability of the interactions and binding affinities between drugs and targets, docking, Molecular dynamics Simulations (MD) simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area approach (MM-PBSA) calculations were carried out. The results demonstrate that SFJDC regulates the immunomodulatory and anti-inflammatory related targets on multiple pathways through its active ingredients, showing the potential anti-novel coronavirus effect. Overall, the work can provide a better understanding of the therapeutic mechanism of SFJDC for treating SARS-CoV-2 pneumonia from multi-scale perspectives, and may also offer a valuable clue for developing novel pharmaceutical strategies to control the current coronavirus.
RESUMO
BACKGROUND: The aim of the present study was to investigate the synergistic effects and interactive mechanisms of Shufeng Jiedu Capsule (SFJDC) combined with oseltamivir in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) induced by the influenza A virus (IAV). METHODS: The extraction of SFJDC was analyzed by UHPLC/ESI Q-Orbitrap Mass Spectrometry. Human bronchial epithelial cells were isolated from COPD (DHBE) bronchial tissues, co-cultured with IAV for 24â¯h, and were subsequently treated with SFJDC and/or oseltamivir. Cell viability was detected by MTT assay. A rat model of COPD with IAV infection was established and treated with SFJDC and/or oseltamivir. Interleukin (IL)-1ß and IL-18 in serum and bronchoalveolar lavage fluid (BALF) were measured by ELISA. Additionally, mRNA and protein levels of NLRP3 inflammasome pathway were measured by quantitative real-time PCR and Western blotting, respectively. RESULTS: SFJDC and/or oseltamivir, at their optimal concentrations, had no significant cytotoxicity against DHBEs. The levels of NLRP3-inflammasome-associated components were significantly elevated after cells were inoculated with IAV, whereas the mRNA and protein levels of these components were significantly decreased after treatment with SFJDC and/or oseltamivir in vitro. Moreover, in vivo, the combination of SFJDC and oseltamivir improved survival rates, attenuated clinical symptoms, induced weight gain, alleviated lung damage, and significantly reduced IL-1ß and IL-18 levels in serum and BALF, as well as reduced the expression levels of NLRP3-associated components and viral titers in lung homogenates. CONCLUSION: SFJDC combined with oseltamivir treatment significantly attenuated IAV-induced airway inflammation and lung viral titers. Hence, our findings may provide a novel therapeutic strategy for IAV-induced respiratory infection.
Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Oseltamivir/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/virologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Animais , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/virologia , Líquido da Lavagem Broncoalveolar/virologia , Linhagem Celular , Técnicas de Cocultura/métodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/virologia , Influenza Humana/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Carga Viral/efeitos dos fármacosRESUMO
BACKGROUND: Shufeng Jiedu Capsule (SFJDC), a traditional Chinese medicine, has been used widely as antiviral, antibacterial, antitumor, and anti-inflammatory drugs. Previous studies indicated that some active ingredients of Shufeng Jiedu Capsule, such as resveratrol and quercetin, could suppress hepatocellular carcinoma (HCC) cells through various signaling pathways. However, anti-HCC activity of SFJDC as a complementary medicine remains unexplored. Here, we use a combination of Shufeng Jiedu Capsule and doxorubicin to treat HCC cells and investigated the effects and mechanisms of SFJDC and its ingredientsin vitro. METHODS: In this study, two HCC cell lines, HepG2 and HepG2.2.15, were employed and all cells were separated into seven groups: doxorubicin group, SFJDC group, combination of doxorubicin and SFJDC group, resveratrol group, quercetin group, resveratrol and quercetin group, and control group. Through this research, the cellular functional experiments, such as MTT assay, Hoechst 33,258 staining, would healing assay, and transwell assay, were took to observe the effects of those agents on proliferation, apoptosis, migration and invasion of cells. Then, apoptosis and invasion related genes and proteins were detected by real-time PCR and western blot to illuminate the signaling pathways. RESULTS: The combination group induced more significant apoptosis and inhibition of migration and invasion by affecting proteins and mRNA of apoptosis, migration, and invasion related elements, such as Bcl-2, Bax, mTOR, and NF-?B. Furthermore, the research suggested SFJDC, as a mixture of a number of ingredients, had stronger activities than particular component or simple mixture of a few components. CONCLUSIONS: SFJDC and its active ingredients could play a role as complementary medicine to increase antitumor effect of doxorubicin by targeting mitochondrial, Akt/mTOR, and NF-?B signaling pathways.