Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732806

RESUMO

The main consequence of radiation damage on a silicon photomultiplier (SiPM) is a significant increase in the dark current. If the SiPM is not adequately cooled, the power dissipation causes it to heat up, which alters its performance parameters. To investigate this heating effect, a measurement cycle was developed and performed with a KETEK SiPM glued to an Al2O3 substrate and with HPK SiPMs glued to either an Al2O3 substrate or a flexible PCB. The assemblies were connected either directly to a temperature-controlled chuck on a probe station, or through layers of materials with defined thermal resistance. An LED operated in DC mode was used to illuminate the SiPM and to tune the power dissipated in a measurement cycle. The SiPM current was used to determine the steady-state temperature reached by the SiPM via a calibration curve. The increase in SiPM temperature due to self-heating is analyzed as a function of the power dissipation in the SiPM and the thermal resistance. This information can be used to adjust the operating voltage of the SiPMs, taking into account the effects of self-heating. Similarly, this approach can be applied to investigate the unknown thermal contact of packaged SiPMs.

2.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339627

RESUMO

Source localisation and real-time dose verification are at the forefront of medical research in brachytherapy, an oncological radiotherapy procedure based on radioactive sources implanted in the patient body. The ORIGIN project aims to respond to this medical community's need by targeting the development of a multi-point dose mapping system based on fibre sensors integrating a small volume of scintillating material into the tip and interfaced with silicon photomultipliers operated in counting mode. In this paper, a novel method for the selection of the optimal silicon photomultipliers to be used is presented, as well as a laboratory characterisation based on dosimetric figures of merit. More specifically, a technique exploiting the optical cross-talk to maintain the detector linearity in high-rate conditions is demonstrated. Lastly, it is shown that the ORIGIN system complies with the TG43-U1 protocol in high and low dose rate pre-clinical trials with actual brachytherapy sources, an essential requirement for assessing the proposed system as a dosimeter and comparing the performance of the system prototype against the ORIGIN project specifications.


Assuntos
Braquiterapia , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Dosímetros de Radiação , Radiometria/métodos , Software
3.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475207

RESUMO

The finite number of pixels in a silicon photomultiplier (SiPM) limits its dynamic range to light pulses up to typically 80% of the total number of pixels in a device. Correcting the non-linear response is essential to extend the SiPM's dynamic range. One challenge in determining the non-linear response correction is providing a reference linear light source. Instead, the single-step method used to calibrate PMTs is applied, based on the difference in responses to two light sources. With this method, the response of an HPK SiPM (S14160-1315PS) is corrected to linearity within 5% while extending the linear dynamic range by a factor larger than ten. The study shows that the response function does not vary by more than 5% for a variation in the operating voltage between 2 and 5 V overvoltage in the gate length between 20 and 100 ns and for a time delay between the primary and secondary light of up to 40 ns.

4.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733041

RESUMO

Open Hardware-based microcontrollers, especially the Arduino platform, have become a comparably easy-to-use tool for rapid prototyping and implementing creative solutions. Such devices in combination with dedicated front-end electronics can offer low-cost alternatives for student projects, slow control and independently operating small-scale instrumentation. The capabilities can be extended to data taking and signal analysis at mid-level rates. Two detector realizations are presented, which cover the readouts of proportional counter tubes and of scintillators or wavelength-shifting fibers with silicon photomultipliers (SiPMs). The SiPMTrigger realizes a small-scale design for coincidence readout of SiPMs as a trigger or veto detector. It consists of a custom mixed signal front-end board featuring signal amplification, discrimination and a coincidence unit for rates of up to 200 kHz. The nCatcher transforms an Arduino Nano to a proportional counter readout with pulse shape analysis: time over threshold measurement and a 10-bit analog-to-digital converter for pulse heights. The device is suitable for low-to-medium-rate environments up to 5 kHz, where a good signal-to-noise ratio is crucial. We showcase the monitoring of thermal neutrons. For data taking and slow control, a logger board is presented that features an SD card and GSM/LoRa interface.

5.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38676265

RESUMO

A systematic study of the nonlinear response of Silicon Photomultipliers (SiPMs) was conducted through Monte Carlo (MC) simulations. The MC code was validated against experimental data for two different SiPMs. Nonlinearity mainly depends on the balance between the photon rate and the pixel recovery time. Additionally, nonlinearity has been found to depend on the light pulse shape, the correlated noise, the overvoltage dependence of the photon detection efficiency, and the impedance of the readout circuit. Correlated noise has been shown to have a minor impact on nonlinearity, but it can significantly affect the shape of the SiPM output current. Considering these dependencies and a previous statistical analysis of the nonlinear response of SiPMs, two phenomenological fitting models were proposed for exponential-like and finite light pulses, explaining the roles of their various terms and parameters. These models provide an accurate description of the nonlinear responses of SiPMs at the level of a few percentages for a wide range of situations.

6.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931622

RESUMO

Thanks to advancements in silicon photomultiplier sensors (SiPMs) and system-on-chip (SoC) technology, our INFN Roma1 group developed ArduSiPM in 2012, the first all-in-one scintillator particle detector in the literature. It used a custom Arduino Due shield to process fast signals, utilizing the Microchip Sam3X8E SoC's internal peripherals to control and acquire SiPM signals. The availability of radiation-tolerant SoCs, combined with the goal of reducing system space and weight, led to the development of an innovative second-generation board, a better-performing device called Cosmo ArduSiPM, suitable for space missions. The architecture of the new detector is based on the Microchip SAMV71 300 MHz, 32-bit ARM® Cortex®-M7 (Microchip Technology Inc., Chandler, AZ, USA). While the analog front-end is essentially identical to the ArduSiPM, it utilizes components with the smallest possible package. The board fits in a CubeSat module. Thanks to the compact design, the board has two independent channels, with a total weight of only 40 grams within a CubeSat form factor. The ArduSiPM architecture is based on a single microcontroller and fast discrete analog electronics. It benefits from the continued development of SoCs related to the IoT (Internet of Things) market. Compared with a system with a custom ASIC, this architecture based on software and SoC capabilities offers considerable advantages in terms of cost and development time. The ability to incorporate new commercial SoCs, continuously emerging from advancements in the aerospace and automotive industries, provides the system with a robust foundation for sustained growth over the years. A detailed characterization of the hardware and the system's response to different photon fluxes is presented in this article. Additionally, coupling the device with a scintillator was tested at the end of this article as a preliminary trial for future measurements, showing potential for further enhancement of the detector's capabilities.

7.
Sensors (Basel) ; 24(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065904

RESUMO

Silicon photomultipliers (SiPMs) are solid-state single-photon-sensitive detectors that show excellent performance in a wide range of applications. In FBK (Trento, Italy), we developed a position-sensitive SiPM technology, called "linearly graded" (LG-SiPM), which is based on an avalanche-current weighted-partitioning approach. It shows position reconstruction resolution below 250 µm on an 8 × 8 mm2 device area with four readout channels and minimal distortions. A recent development in terms of LG-SIPM is a larger chip version (10 × 10 mm2) based on FBK NUV-HD technology (near-ultraviolet sensitive), with a peak photon detection efficiency at 420 nm. Such a large-area detector with position sensitivity is very interesting in applications like MR-compatible PET, high-energy physics experiments, and readout of time-projection chambers, gamma and beta cameras, or scintillating fibers, with a reduced number of channels. These SiPMs were characterized in terms of noise, photon detection efficiency, and position resolution. We also developed tiles of 2 × 2 and 3 × 3 LG-SiPMs, reaching very large sensitive areas of 20 × 20 mm2 and 30 × 30 mm2. We implemented a "smart-channel" configuration, which allowed us to have just six output channels for the 2 × 2 elements and eight channels for the 3 × 3 element tiles, preserving a position resolution below 0.5 mm. These kinds of detectors provide a great advantage in compact and low-power applications by maintaining position sensitivity over large areas with a small number of channels.

8.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124037

RESUMO

Silicon Photomultipliers (SiPMs) are single photon detectors that gained increasing interest in many applications as an alternative to photomultiplier tubes. In the field of space experiments, where volume, weight and power consumption are a major constraint, their advantages like compactness, ruggedness, and their potential to achieve high quantum efficiency from UV to NIR makes them ideal candidates for spaceborne, low photon flux detectors. During space missions however, SiPMs are usually exposed to high levels of radiation, both ionizing and non-ionizing, which can deteriorate the performance of these detectors over time. The goal of this work is to compare process and layout variation of SiPMs in terms of their radiation damage effects to identify the features that helps reduce the deterioration of the performance and develop the next generation of more radiation-tolerant detectors. To do this, we used protons and X-rays to irradiate several Near Ultraviolet High-Density (NUV-HD) SiPMs with small areas (single microcell, 0.2 × 0.2 mm2 and 1 × 1 mm2) produced at Fondazione Bruno Kessler (FBK), Italy. We performed online current-voltage measurements right after each irradiation step, and a complete functional characterization before and after irradiation. We observed that the main contribution to performance degradation in space applications comes from proton damage in the form of an increase in primary dark count rate (DCR) proportional to the proton fluence and a reduction in activation energy. In this context, small active area devices show a lower DCR before and after irradiation, and we propose light or charge-focusing mechanisms as future developments for high-sensitivity radiation-tolerant detectors.

9.
Eur J Nucl Med Mol Imaging ; 50(8): 2258-2270, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36947185

RESUMO

PURPOSE: Monoclonal antibody (mAb)-based PET (immunoPET) imaging can characterise tumour lesions non-invasively. It may be a valuable tool to determine which patients may benefit from treatment with a specific monoclonal antibody (mAb) and evaluate treatment response. For 89Zr immunoPET imaging, higher sensitivity of state-of-the art PET/CT systems equipped with silicon photomultiplier (SiPM)-based detector elements may be beneficial as the low positron abundance of 89Zr causes a low signal-to-noise level. Moreover, the long physical half-life limits the amount of activity that can be administered to the patients leading to poor image quality even when using long scan durations. Here, we investigated the difference in semiquantitative performance between the PMT-based Biograph mCT, our clinical reference system, and the SiPM-based Biograph Vision PET/CT in 89Zr immunoPET imaging. Furthermore, the effects of scan duration reduction using the Vision on semiquantitative imaging parameters and its influence on image quality assessment were evaluated. METHODS: Data were acquired on day 4 post 37 MBq 89Zr-labelled mAb injection. Five patients underwent a double scan protocol on both systems. Ten patients were scanned only on the Vision. For PET image reconstruction, three protocols were used, i.e. one camera-dependent protocol and European Association of Nuclear Medicine Research Limited (EARL) standards 1 and 2 compliant protocols. Vision data were acquired in listmode and were reprocessed to obtain images at shorter scan durations. Semiquantitative PET image parameters were derived from tumour lesions and healthy tissues to assess differences between systems and scan durations. Differently reconstructed images obtained using the Vision were visually scored regarding image quality by two nuclear medicine physicians. RESULTS: When images were reconstructed using 100% acquisition time on both systems following EARL standard 1 compliant reconstruction protocols, results regarding semiquantification were comparable. For Vision data, reconstructed images that conform to EARL1 standards still resulted in comparable semiquantification at shorter scan durations (75% and 50%) regarding 100% acquisition time. CONCLUSION: Scan duration of 89Zr immunoPET imaging using the Vision can be decreased up to 50% compared with using the mCT while maintaining image quality using the EARL1 compliant reconstruction protocol.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias/diagnóstico por imagem , Padrões de Referência , Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador
10.
J Nucl Cardiol ; 30(4): 1385-1395, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36574175

RESUMO

BACKGROUND: The most reliable quantitative variable on Rubidium-82 (82Rb) cardiac PET/CT for predicting major adverse cardiovascular events (MACE) has not been characterized with low-dose silicon photomultipliers (SiPM) technology, which allows halving injected activity and radiation dose delivering less than 1.0 mSv in a 70-kg individual. METHODS AND RESULTS: We prospectively enrolled 234 consecutive participants with suspected myocardial ischemia. Participants underwent 82Rb cardiac SiPM PET/CT (5 MBq/kg) and were followed up for MACE over 652 days (interquartile range 559-751 days). For each participant, global stress myocardial blood flow (stress MBF), global myocardial flow reserve (MFR), and regional severely reduced myocardial flow capacity (MFCsevere) were measured. The Youden index was used to select optimal thresholds. In multivariate analysis after adjustments for clinical risk factors, reduced global stress MBF < 1.94 ml/min/g, reduced global MFR < 1.98, and regional MFCsevere > 3.2% of left ventricle emerged all as independent predictors of MACE (HR 4.5, 3.1, and 3.67, respectively, p < 0.001). However, only reduced global stress MBF remained an independent prognostic factor for MACE after adjusting for clinical risk factors and the combined use of global stress MBF, global MFR, and regional MFCsevere impairments (HR 2.81, p = 0.027). CONCLUSION: Using the latest SiPM PET technology with low-dose 82Rb halving the standard activity to deliver < 1 mSv for a 70-kg patient, impaired global stress MBF, global MFR, and regional MFC were powerful predictors of cardiovascular events, outperforming traditional cardiovascular risk factors. However, only reduced global stress MBF independently predicted MACE, being superior to global MFR and regional MFC impairments.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Imagem de Perfusão do Miocárdio , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Circulação Coronária/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Miocárdio , Radioisótopos de Rubídio , Imagem de Perfusão do Miocárdio/métodos
11.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36772141

RESUMO

Silicon photomultipliers' relatively large areas and ability to detect single photons make them attractive as receivers for optical wireless communications. In this paper, the relative importance of the non-linearity and width of SiPMs' fast output in their performance in receivers is investigated using Monte Carlo simulations. Using these results, the performances of receivers containing different SiPMs are estimated. This is followed by a discussion of the potential performances of arrays of existing SiPMs. Finally, the possible dramatic improvements in performance that could be achieved by using two stacked integrated circuits are highlighted.

12.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37420538

RESUMO

Conventional designs of an avalanche photodiode (APD) have been based on a planar p-n junction since the 1960s. APD developments have been driven by the necessity to provide a uniform electric field over the active junction area and to prevent edge breakdown by special measures. Most modern silicon photomultipliers (SiPM) are designed as an array of Geiger-mode APD cells based on planar p-n junctions. However, the planar design faces an inherent trade-off between photon detection efficiency and dynamic range due to loss of an active area at the cell edges. Non-planar designs of APDs and SiPMs have also been known since the development of spherical APDs (1968), metal-resistor-semiconductor APDs (1989), and micro-well APDs (2005). The recent development of tip avalanche photodiodes (2020) based on the spherical p-n junction eliminates the trade-off, outperforms the planar SiPMs in the photon detection efficiency, and opens new opportunities for SiPM improvements. Furthermore, the latest developments in APDs based on electric field-line crowding and charge-focusing topology with quasi-spherical p-n junctions (2019-2023) show promising functionality in linear and Geiger operating modes. This paper presents an overview of designs and performances of non-planar APDs and SiPMs.


Assuntos
Fótons , Semicondutores , Desenho de Equipamento
13.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991905

RESUMO

In this study, a review of second-generation voltage conveyor (VCII) and current conveyor (CCII) circuits for the conditioning of bio signals and sensors is presented. The CCII is the most known current-mode active block, able to overcome some of the limitations of the classical operational amplifier, which provides an output current instead of a voltage. The VCII is nothing more than the dual of the CCII, and for this reason it enjoys almost all the properties of the CCII but also provides an easy-to-read voltage as an output signal. A broad set of solutions for relevant sensors and biosensors employed in biomedical applications is considered. This ranges from the widespread resistive and capacitive electrochemical biosensors now used in glucose and cholesterol meters and in oximetry to more specific sensors such as ISFETs, SiPMs, and ultrasonic sensors, which are finding increasing applications. This paper also discusses the main benefits of this current-mode approach over the classical voltage-mode approach in the realization of readout circuits that can be used as electronic interfaces for different types of biosensors, including higher circuit simplicity, better low-noise and/or high-speed performance, and lower signal distortion and power consumption.


Assuntos
Técnicas Biossensoriais , Eletrônica
14.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050472

RESUMO

With the growing importance of single-photon-counting (SPC) techniques, researchers are now designing high-performance systems based on single-photon avalanche diodes (SPADs). SPADs with high performances and low cost allow the popularity of SPC-based systems for medical and industrial applications. However, few efforts were put into the design optimization of SPADs due to limited calibrated models of the SPAD itself and its related circuits. This paper provides a perspective on improving SPAD-based system design by reviewing the development of SPAD models. First, important SPAD principles such as photon detection probability (PDP), dark count rate (DCR), afterpulsing probability (AP), and timing jitter (TJ) are discussed. Then a comprehensive discussion of various SPAD models focusing on each of the parameters is provided. Finally, important research challenges regarding the development of more advanced SPAD models are summarized, followed by the outlook for the future development of SPAD models and emerging SPAD modeling methods.

15.
Exp Astron (Dordr) ; 55(2): 343-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063519

RESUMO

POLAR-2 is a space-borne polarimeter, built to investigate the polarization of Gamma-Ray Bursts and help elucidate their mechanisms. The instrument is targeted for launch in 2024 or 2025 aboard the China Space Station and is being developed by a collaboration between institutes from Switzerland, Germany, Poland and China. The instrument will orbit at altitudes between 340km and 450km with an inclination of 42 ∘ and will be subjected to background radiation from cosmic rays and solar events. It is therefore pertinent to better understand the performance of sensitive devices under space-like conditions. In this paper we focus on the radiation damage of the silicon photomultiplier arrays S13361-6075NE-04 and S14161-6050HS-04 from Hamamatsu. The S13361 are irradiated with 58MeV protons at several doses up to 4.96Gy, whereas the newer series S14161 are irradiated at doses of 0.254Gy and 2.31Gy. Their respective performance degradation due to radiation damage are discussed. The equivalent exposure time in space for silicon photomultipliers inside POLAR-2 with a dose of 4.96Gy is 62.9years (or 1.78years when disregarding the shielding from the instrument). Primary characteristics of the I-V curves are an increase in the dark current and dark counts, mostly through cross-talk events. Annealing processes at 25 ∘ C were observed but not studied in further detail. Biasing channels while being irradiated have not resulted in any significant impact. Activation analyses showed a dominant contribution of ß + particles around 511 keV. These resulted primarily from copper and carbon, mostly with decay times shorter than the orbital period.

16.
Eur J Nucl Med Mol Imaging ; 49(13): 4652-4660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876867

RESUMO

PURPOSE: Current European Association of Nuclear Medicine (EANM) Research Ltd. (EARL) guidelines for the standardisation of PET imaging developed for conventional systems have not yet been adjusted for long axial field-of-view (LAFOV) systems. In order to use the LAFOV Siemens Biograph Vision Quadra PET/CT (Siemens Healthineers, Knoxville, TN, USA) in multicentre research and harmonised clinical use, compliance to EARL specifications for 18F-FDG tumour imaging was explored in the current study. Additional tests at various locations throughout the LAFOV and the use of shorter scan durations were included. Furthermore, clinical data were collected to further explore and validate the effects of reducing scan duration on semi-quantitative PET image biomarker accuracy and precision when using EARL-compliant reconstruction settings. METHODS: EARL compliance phantom measurements were performed using the NEMA image quality phantom both in the centre and at various locations throughout the LAFOV. PET data (maximum ring difference (MRD) = 85) were reconstructed using various reconstruction parameters and reprocessed to obtain images at shorter scan durations. Maximum, mean and peak activity concentration recovery coefficients (RC) were obtained for each sphere and compared to EARL standards specifications. Additionally, PET data (MRD = 85) of 10 oncological patients were acquired and reconstructed using various reconstruction settings and reprocessed from 10 min listmode acquisition into shorter scan durations. Per dataset, SUVs were derived from tumour lesions and healthy tissues. ANOVA repeated measures were performed to explore differences in lesion SUVmax and SUVpeak. Wilcoxon signed-rank tests were performed to evaluate differences in background SUVpeak and SUVmean between scan durations. The coefficient of variation (COV) was calculated to characterise noise. RESULTS: Phantom measurements showed EARL compliance for all positions throughout the LAFOV for all scan durations. Regarding patient data, EARL-compliant images showed no clinically meaningful significant differences in lesion SUVmax and SUVpeak or background SUVmean and SUVpeak between scan durations. Here, COV only varied slightly. CONCLUSION: Images obtained using the Vision Quadra PET/CT comply with EARL specifications. Scan duration and/or activity administration can be reduced up to a factor tenfold without the interference of increased noise.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Imagens de Fantasmas , Biomarcadores
17.
J Nucl Cardiol ; 29(1): 204-212, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32410059

RESUMO

BACKGROUND: PET scanners using silicon photomultipliers with digital readout (SiPM PET) have an improved temporal and spatial resolution compared to PET scanners using conventional photomultiplier tubes (PMT PET). However, the effect on image quality and visibility of perfusion defects in myocardial perfusion imaging (MPI) is unknown. Our aim was to determine the value of a SiPM PET scanner in MPI. METHODS: We prospectively included 30 patients who underwent rest and regadenoson-induced stress Rubidium-82 (Rb-82) MPI on the D690 PMT PET (GE Healthcare) and within three weeks on the Vereos SiPM PET (Philips Healthcare). Two expert readers scored the image quality and assessed the existence of possible defects. In addition, interpreter's confidence, myocardial blood flow (MBF), and myocardial flow reserve (MFR) values were compared. RESULTS: Image quality improved (P = 0.03) using the Vereos as compared to the D690. Image quality of the Vereos and the D690 was graded fair in 20% and 10%, good in 60% and 50%, and excellent in 20% and 40%, respectively. Defect interpretation and interpreter's confidence did not differ between the D690 and the Vereos (P > 0.50). There were no significant differences in rest MBF (P ≥ 0.29), stress MBF (P ≥ 0.11), and MFR (P ≥ 0.51). CONCLUSION: SiPM PET provides an improved image quality in comparison with PMT PET. Defect interpretation, interpreter's confidence, and absolute blood flow measurements were comparable between both systems. SiPM PET is therefore a reliable technique for MPI using Rb-82. TRIAL REGISTRATION: ToetsingOnline NL63853.075.17. Registered 13 November, 2017.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária/fisiologia , Humanos , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Rubídio , Tomografia Computadorizada por Raios X
18.
Sensors (Basel) ; 22(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214315

RESUMO

Spotting radioactive material in waste is of paramount importance for environment protection. This is particularly challenging when orphan sources are hidden in scrap metal that shields their activity from the traditional detectors in the portals scanning incoming trucks. In order to address this issue, we present a wireless and compact SiPM-based gamma spectrometer compatible with strong magnetic fields (0.1 T) to be installed in the bore of the lifting electromagnets to scan reduced volumes of metal and thus achieve higher sensitivity. The microcontroller-based instrument provides 11% energy resolution (at 662 keV), an energy range from 60 keV to 1.5 MeV, a max. count rate of 30 kcps, a weight <1 kg, and a power consumption <1 W. The results of its extensive characterization in the laboratory and its validation in the field, including operation in a scrap yard as well as on a drone, are reported.


Assuntos
Monitoramento Ambiental , Metais , Fenômenos Magnéticos , Metais/análise
19.
Sensors (Basel) ; 22(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161845

RESUMO

Silicon Photomultiplier (SiPM) is a sensor that can detect low-light signals lower than the single-photon level. In order to study the properties of neutrinos at a low detection threshold and low radioactivity experimental background, a low-temperature CsI neutrino coherent scattering detector is designed to be read by the SiPM sensor. Less thermal noise of SiPM and more light yield of CsI crystals can be obtained at the working temperature of liquid nitrogen. The breakdown voltage (Vbd) and dark count rate (DCR) of SiPM at liquid nitrogen temperature are two key parameters for coherent scattering detection. In this paper, a low-temperature test is conducted on the mass-produced ON Semiconductor J-Series SiPM. We design a cryogenic system for cooling SiPM at liquid nitrogen temperature and the changes of operating voltage and dark noise from room to liquid nitrogen temperature are measured in detail. The results show that SiPM works at the liquid nitrogen temperature, and the dark count rate drops by six orders of magnitude from room temperature (120 kHz/mm2) to liquid nitrogen temperature (0.1 Hz/mm2).

20.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808247

RESUMO

In the framework of radioactive material handling, such as in radwaste sorting and segregation operations, the availability of a simple tool to quickly detect and locate gamma radiation spots can be quite convenient. Additional spectroscopic features, even with moderate energy resolutions, could provide a useful benefit. As a proof of principle for such a tool, we developed a gamma detector prototype featuring an array of 10 × 10 CsI(Tl) scintillators (1 × 1 × 1 cm3) providing readouts by means of a corresponding array of 6 × 6 mm2 silicon photo multipliers (SiPM). Such a detector table could be easily incorporated into a work desk for quick scanning of possibly radioactive objects. The proposed detector has a good counting efficiency and energy resolution, while the simulations and tests show interesting hot-spot localization capabilities.


Assuntos
Tomografia por Emissão de Pósitrons , Silício , Raios gama , Decoração de Interiores e Mobiliário , Contagem de Cintilação , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA