Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2315347120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967220

RESUMO

The organelle contact site of the endoplasmic reticulum and mitochondria, known as the mitochondria-associated membrane (MAM), is a multifunctional microdomain in cellular homeostasis. We previously reported that MAM disruption is a common pathological feature in amyotrophic lateral sclerosis (ALS); however, the precise role of MAM in ALS was uncovered. Here, we show that the MAM is essential for TANK-binding kinase 1 (TBK1) activation under proteostatic stress conditions. A MAM-specific E3 ubiquitin ligase, autocrine motility factor receptor, ubiquitinated nascent proteins to activate TBK1 at the MAM, which results in ribosomal protein degradation. MAM or TBK1 deficiency under proteostatic stress conditions resulted in increased cellular vulnerability in vitro and motor impairment in vivo. Thus, MAM disruption exacerbates proteostatic stress via TBK1 inactivation in ALS. Our study has revealed a proteostatic mechanism mediated by the MAM-TBK1 axis, highlighting the physiological importance of the organelle contact sites.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Cell Mol Life Sci ; 81(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191696

RESUMO

Sigma-1 receptor (S1R) is a calcium-sensitive, ligand-operated receptor chaperone present on the endoplasmic reticulum (ER) membrane. S1R plays an important role in ER-mitochondrial inter-organelle calcium signaling and cell survival. S1R and its agonists confer resilience against various neurodegenerative diseases; however, the molecular mechanism of S1R is not yet fully understood. At resting state, S1R is either in a monomeric or oligomeric state but the ratio of these concentrations seems to change upon activation of S1R. S1R is activated by either cellular stress, such as ER-calcium depletion, or ligands. While the effect of ligands on S1R quaternary structure remains unclear, the effect of cellular stress has not been studied. In this study we utilize cellular and an in-vivo model to study changes in quaternary structure of S1R upon activation. We incubated cells with cellular stressors (H2O2 and thapsigargin) or exogenous ligands, then quantified monomeric and oligomeric forms. We observed that benzomorphan-based S1R agonists induce monomerization of S1R and decrease oligomerization, which was confirmed in the liver tissue of mice injected with (+)-Pentazocine. Antagonists block this effect but do not induce any changes when used alone. Oxidative stress (H2O2) increases the monomeric/oligomeric S1R ratio whereas ER calcium depletion (thapsigargin) has no effect. We also analyzed the oligomerization ability of various truncated S1R fragments and identified the fragments favorizing oligomerization. In this publication we demonstrate that quaternary structural changes differ according to the mechanism of S1R activation. Therefore, we offer a novel perspective on S1R activation as a nuanced phenomenon dependent on the type of stimulus.


Assuntos
Benzomorfanos , Cálcio , Animais , Camundongos , Peróxido de Hidrogênio , Receptor Sigma-1 , Tapsigargina , Sinalização do Cálcio
3.
Brain Behav Immun ; 120: 256-274, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852761

RESUMO

Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.


Assuntos
Antidepressivos , Astrócitos , Transtorno Depressivo Maior , Camundongos Endogâmicos C57BL , NF-kappa B , Córtex Pré-Frontal , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/agonistas , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Camundongos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Antidepressivos/farmacologia , NF-kappa B/metabolismo , Masculino , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Depressão/metabolismo , Depressão/tratamento farmacológico
4.
Mol Pharm ; 21(7): 3281-3295, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848439

RESUMO

Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-ß1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-ß1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.


Assuntos
Abietanos , Doxorrubicina , Fibrose , Glomerulonefrite , Rim , Lipossomos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Lipossomos/química , Abietanos/farmacologia , Abietanos/química , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Fator de Crescimento Transformador beta1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Modelos Animais de Doenças , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente
5.
Inflamm Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095656

RESUMO

BACKGROUND AND OBJECTIVE: Neuropathic pain is a chronic condition characterized by aberrant signaling within the somatosensory system, affecting millions of people worldwide with limited treatment options. Herein, we aim at investigating the potential of a sigma-1 receptor (σ1R) antagonist in managing neuropathic pain. METHODS: A Chronic Constriction Injury (CCI) model was used to induce neuropathic pain. The potential of (+)-MR200 was evaluated following daily subcutaneous injections of the compound. Its mechanism of action was confirmed by administration of a well-known σ1R agonist, PRE084. RESULTS: (+)-MR200 demonstrated efficacy in protecting neurons from damage and alleviating pain hypersensitivity in CCI model. Our results suggest that (+)-MR200 reduced the activation of astrocytes and microglia, cells known to contribute to the neuroinflammatory process, suggesting that (+)-MR200 may not only address pain symptoms but also tackle the underlying cellular mechanism involved. Furthermore, (+)-MR200 treatment normalized levels of the gap junction (GJ)-forming protein connexin 43 (Cx43), suggesting a reduction in harmful intercellular communication that could fuel the chronicity of pain. CONCLUSIONS: This approach could offer a neuroprotective strategy for managing neuropathic pain, addressing both pain symptoms and cellular processes driving the condition. Understanding the dynamics of σ1R expression and function in neuropathic pain is crucial for clinical intervention.

6.
Brain ; 146(2): 475-491, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35871491

RESUMO

Chemotherapy-induced peripheral neuropathy is a frequent, disabling side effect of anticancer drugs. Oxaliplatin, a platinum compound used in the treatment of advanced colorectal cancer, often leads to a form of chemotherapy-induced peripheral neuropathy characterized by mechanical and cold hypersensitivity. Current therapies for chemotherapy-induced peripheral neuropathy are ineffective, often leading to the cessation of treatment. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal, non-selective cation-permeable channel expressed in nociceptors, activated by physical stimuli and cellular stress products. TRPA1 has been linked to the establishment of chemotherapy-induced peripheral neuropathy and other painful neuropathic conditions. Sigma-1 receptor is an endoplasmic reticulum chaperone known to modulate the function of many ion channels and receptors. Sigma-1 receptor antagonist, a highly selective antagonist of Sigma-1 receptor, has shown effectiveness in a phase II clinical trial for oxaliplatin chemotherapy-induced peripheral neuropathy. However, the mechanisms involved in the beneficial effects of Sigma-1 receptor antagonist are little understood. We combined biochemical and biophysical (i.e. intermolecular Förster resonance energy transfer) techniques to demonstrate the interaction between Sigma-1 receptor and human TRPA1. Pharmacological antagonism of Sigma-1R impaired the formation of this molecular complex and the trafficking of functional TRPA1 to the plasma membrane. Using patch-clamp electrophysiological recordings we found that antagonists of Sigma-1 receptor, including Sigma-1 receptor antagonist, exert a marked inhibition on plasma membrane expression and function of human TRPA1 channels. In TRPA1-expressing mouse sensory neurons, Sigma-1 receptor antagonists reduced inward currents and the firing of actions potentials in response to TRPA1 agonists. Finally, in a mouse experimental model of oxaliplatin neuropathy, systemic treatment with a Sigma-1 receptor antagonists prevented the development of painful symptoms by a mechanism involving TRPA1. In summary, the modulation of TRPA1 channels by Sigma-1 receptor antagonists suggests a new strategy for the prevention and treatment of chemotherapy-induced peripheral neuropathy and could inform the development of novel therapeutics for neuropathic pain.


Assuntos
Antineoplásicos , Neuralgia , Canais de Potencial de Receptor Transitório , Camundongos , Humanos , Animais , Oxaliplatina/toxicidade , Canal de Cátion TRPA1 , Antineoplásicos/toxicidade , Neuralgia/induzido quimicamente , Neuralgia/prevenção & controle , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptor Sigma-1
7.
Acta Pharmacol Sin ; 45(8): 1582-1590, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605179

RESUMO

SCH23390 is a widely used D1 dopamine receptor (D1R) antagonist that also elicits some D1R-independent effects. We previously found that the benzazepine, SKF83959, an analog of SCH23390, produces positive allosteric modulation of the Sigma-1 receptor (Sig1R). SCH23390 does not bind to the orthodoxic site of Sig1R but enhances the binding of 3H (+)-pentazocine to Sig1R. In this study, we investigated whether SCH23390 functions as an allosteric modulator of Sig1R. We detected increased Sig1R dissociation from binding immunoglobulin protein (BiP) and translocation of Sig1R to the plasma membrane in response to SCH23390 in transfected HEK293T and SH-SY5Y cells, respectively. Activation of Sig1R by SCH23390 was further confirmed by inhibition of GSK3ß activity in a time- and dose-dependent manner; this effect was blocked by pretreatment with the Sig1R antagonist, BD1047, and by knockdown of Sig1R. SCH23390 also inhibited GSK3ß in wild-type mice but not in Sig1R knockout mice. Finally, we showed that SCH23390 allosterically modulated the effect of the Sig1R agonist SKF10047 on inhibition of GSK3ß. This positive allosteric effect of SCH23390 was further confirmed via promotion of neuronal protection afforded by SKF10047 in primary cortical neurons challenged with MPP+. These results provide the first evidence that SCH23390 elicits functional allosteric modulation of Sig1R. Our findings not only reveal novel pharmacological effects of SCH23390 but also indicate a potential mechanism for SCH23390-mediated D1R-independent effects. Therefore, attention should be paid to these Sig1R-mediated effects when explaining pharmacological responses to SCH23390.


Assuntos
Benzazepinas , Receptores de Dopamina D1 , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Humanos , Animais , Benzazepinas/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Células HEK293 , Camundongos , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL
8.
Acta Pharmacol Sin ; 45(4): 704-713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097715

RESUMO

Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg-1·d-1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg-1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg-1·d-1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Ketamina , Receptor Sigma-1 , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Ketamina/farmacologia , Neurônios , Córtex Pré-Frontal/metabolismo , Receptor Sigma-1/agonistas
9.
Arch Toxicol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896176

RESUMO

Ochratoxin A (OTA), a secondary fungal metabolite known for its nephrotoxic effects, is prevalent in various feeds and food items. Our recent study suggests that OTA-induced nephrotoxicity is linked to the Sigma-1 receptor (Sig-1R)-mediated mitochondrial pathway apoptosis in human proximal tubule epithelial-originated kidney-2 (HK-2) cells. However, the contribution of Sig-1R to OTA-induced nephrotoxicity involving other forms of regulated cell death, such as ferroptosis, remains unexplored. In this investigation, cell viability, malondialdehyde (MDA) levels, glutathione (GSH) levels, and protein expressions in HK-2 cells treated with OTA and/or Ferrostatin-1/blarcamesine hydrochloride/BD1063 dihydrochloride were assessed. The results indicate that a 24 h-treatment with 1 µM OTA significantly induces ferroptosis by inhibiting Sig-1R, subsequently promoting nuclear receptor coactivator 4 (NCOA4), long-chain fatty acid-CoA ligase 4 (ACSL4), arachidonate 5-lipoxygenase (ALOX5), autophagy protein 5 (ATG5), and ATG7, inhibiting ferritin heavy chain (FTH1), solute carrier family 7 member 11 (SLC7A11/xCT), glutathione peroxidase 4 (GPX4), peroxiredoxin 6 (PRDX6), and ferroptosis suppressor protein 1 (FSP1), reducing GSH levels, and increasing MDA levels (P < 0.05). In conclusion, OTA induces ferroptosis by inhibiting Sig-1R, subsequently promoting ferritinophagy, inhibiting GPX4/FSP1 antioxidant systems, reducing GSH levels, and ultimately increasing lipid peroxidation levels in vitro.

10.
Ecotoxicol Environ Saf ; 280: 116538, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833980

RESUMO

Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Metanfetamina , Camundongos Knockout , Receptores sigma , Receptor Sigma-1 , Metanfetamina/toxicidade , Animais , Receptores sigma/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fezes/química , Fezes/microbiologia
11.
Phytother Res ; 38(2): 694-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011416

RESUMO

BACKGROUND AND AIM: By using an in vivo phenotypic screening assay in zebrafish, we identified Convolamine, a tropane alkaloid from Convulvus plauricalis, as a positive modulator of the sigma-1 receptor (S1R). The wfs1abKO zebrafish larva, a model of Wolfram syndrome, exhibits an increased visual-motor response due to a mutation in Wolframin, a protein involved in endoplasmic reticulum-mitochondria communication. We previously reported that ligand activating S1R, restored the cellular and behavioral deficits in patient fibroblasts and zebrafish and mouse models. EXPERIMENTAL PROCEDURES: We screened a library of 108 repurposing and natural compounds on zebrafish motor response. KEY RESULTS: One hit, the tropane alkaloid Convolamine, restored normal mobility in wfs1abKO larvae without affecting wfs1abWT controls. They did not bind to the S1R agonist/antagonist binding site nor dissociated S1R from BiP, an S1R activity assay in vitro, but behaved as a positive modulator by shifting the IC50 value of the reference agonist PRE-084 to lower values. Convolamine restored learning in Wfs1∆Exon8 , Dizocilpine-treated, and Aß25-35 -treated mice. These effects were observed at low ~1 mg/kg doses, not shared by Convolvine, the desmethyl metabolite, and blocked by an S1R antagonist. CONCLUSION AND IMPLICATIONS: Convolamine therefore acts as an S1R positive modulator and this pharmacological action is relevant to the traditional use of Shankhpushpi in memory and cognitive protection.


Assuntos
Alcaloides , Convolvulus , Receptores sigma , Humanos , Camundongos , Animais , Receptor Sigma-1 , Receptores sigma/genética , Receptores sigma/metabolismo , Peixe-Zebra/metabolismo , Alcaloides/farmacologia , Cognição
12.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893570

RESUMO

Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly used antipsychotic drug, also possesses SR activity and cytotoxic effects. Herein, we describe the identification of novel SR ligands, obtained by a chemical hybridization approach. There wereendowed with pan-affinity for both SR subtypes and evaluated their potential anticancer activity against SH-SY5Y and HUH-7 cancer cell lines. Through a chemical hybridization approach, we identified novel compounds (4d, 4e, 4g, and 4j) with dual affinity for SR1 and SR2 receptors. These compounds were subjected to cytotoxicity testing using a resazurin assay. The results revealed potent cytotoxic effects against both cancer cell lines, with IC50 values comparable to HAL. Interestingly, the cytotoxic potency of the novel compounds resembled that of the SR1 antagonist HAL rather than the SR2 agonist siramesine (SRM), indicating the potential role of SR1 antagonism in their mechanism of action. The further exploration of their structure-activity relationships and their evaluation in additional cancer cell lines will elucidate their therapeutic potential and may pave the way for the development of novel anticancer agents that target SRs.


Assuntos
Antineoplásicos , Desenho de Fármacos , Haloperidol , Receptores sigma , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Haloperidol/farmacologia , Haloperidol/análogos & derivados , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Ligantes , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
13.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
14.
Neurobiol Dis ; 179: 106031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736924

RESUMO

Organelle contact sites are multifunctional platforms for maintaining cellular homeostasis. Alternations of the mitochondria-associated membranes (MAM), one of the organelle contact sites where the endoplasmic reticulum (ER) is tethered to the mitochondria, have been involved in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the detailed mechanisms through which MAM integrity is disrupted in ALS have not been fully elucidated. Here, we examined whether AAA ATPase domain-containing protein 3A (ATAD3A), a mitochondrial membrane AAA ATPase accumulating at the MAM, is involved in ALS. We found that sigma-1 receptor (σ1R), an ER-resident MAM protein causative for inherited juvenile ALS, required ATAD3A to maintain the MAM. In addition, σ1R retained ATAD3A as a monomer, which is associated with an inhibition of mitochondrial fragmentation. ATAD3A dimerization and mitochondrial fragmentation were significantly induced in σ1R-deficient or SOD1-linked ALS mouse spinal cords. Overall, these observations indicate that MAM induction by σ1R depends on ATAD3A and that σ1R maintains ATAD3A as a monomer to inhibit mitochondrial fragmentation. Our findings suggest that targeting σ1R-ATAD3A axis would be promising for a novel therapeutic strategy to treat mitochondrial dysfunction in neurological disorders, including ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Doenças Neurodegenerativas/metabolismo , Proteínas Mitocondriais/metabolismo , Receptor Sigma-1
15.
Exp Eye Res ; 226: 109308, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400283

RESUMO

PURPOSE: Glaucoma is a worldwide leading cause of irreversible blindness. Standard treatments lower intraocular pressure (IOP). Novel treatments to prevent optic nerve (ON) degeneration are needed. Here, we investigate the hypothesis that sigma-1 receptor (S1R) agonist (+)-pentazocine (PTZ) is neuroprotective in a Brown Norway (BN) rat, microbead model of glaucoma. METHODS: BN rats (9-11 weeks, male and female) were treated by intraperitoneal injection, 3 times per week with (+)-PTZ (2 mg/kg) or vehicle (VEH) alone. Treatment started 1 week prior to intraocular injection of polystyrene microbeads to elevate IOP. IOP was measured 2-3 times per week. Five weeks post microbead injection, rats were euthanized. ONs were removed, then fixed and processed for 63x oil, light microscope imaging of toluidine blue stained ON cross sections. To facilitate comparison of ON morphology from VEH and (+)-PTZ treated rats with similar ocular hypertensive insults, rats were assigned to low (IOP ≤15.8 mmHg), moderate (15.8 < IOP <28.0 mmHg), and high (IOP ≥28.0 mmHg) groups based on average IOP in the microbead injected eye. Axon numbers, axon density, axonal and glial areas, axon loss, and axon size distributions of naïve, bead, and contralateral ONs were assessed using QuPath program for automated image analysis. RESULTS: (+)-PTZ treatment of BN rats protected ONs from damage caused by moderate IOP elevation. Treatment with (+)-PTZ significantly reduced axon loss and glial areas, and increased axon density and axonal areas compared to ONs from VEH treated rats with moderate IOP. (+)-PTZ-mediated neuroprotection was independent of IOP lowering effects. At average IOP ≥28.0 mmHg, (+)-PTZ treatment did not provide measurable neuroprotection. ONs from contralateral eyes exhibited subtle, complex changes in response to conditions in the bead eyes. CONCLUSIONS: S1R agonist (+)-PTZ shows promise as a neuroprotective treatment for glaucoma. Future studies to understand the complex molecular mechanisms by which (+)-PTZ provides this neuroprotection are needed.


Assuntos
Glaucoma , Pentazocina , Ratos , Masculino , Feminino , Animais , Ratos Endogâmicos BN , Microesferas , Pentazocina/farmacologia , Pentazocina/uso terapêutico , Neuroproteção , Células Ganglionares da Retina , Pressão Intraocular , Injeções Intraoculares/efeitos adversos , Modelos Animais de Doenças , Receptor Sigma-1
16.
Neurochem Res ; 48(10): 2925-2935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259012

RESUMO

Parkinson's disease is a neurodegenerative disease affecting mainly the elderly population. It is characterized by the loss of dopaminergic neurons of the substantia nigra pars compacta region. Parkinson's disease patients exhibit motor symptoms like tremors, rigidity, bradykinesia/hypokinesia, and non-motor symptoms like depression, cognitive decline, delusion, and pain. Major pathophysiological factors which contribute to neuron loss include excess/misfolded alpha-synuclein aggregates, microglial cell-mediated neuroinflammation, excitotoxicity, oxidative stress, and defective mitochondrial function. Sigma-1 receptors are molecular chaperones located at mitochondria-associated ER membrane. Their activation (by endogenous ligands or agonists) has shown neuroprotective and neurorestorative effects in various diseases. This review discusses the roles of activated Sig-1 receptors in modulating various pathophysiological features of Parkinson's disease like alpha-synuclein aggregates, neuroinflammation, excitotoxicity, and oxidative stress.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína , Doenças Neuroinflamatórias , Neurônios Dopaminérgicos , Substância Negra , Receptor Sigma-1
17.
Pharmacol Res ; 191: 106771, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068533

RESUMO

Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.


Assuntos
Receptores sigma , Animais , Receptores sigma/metabolismo , Animais Geneticamente Modificados , Receptor Sigma-1
18.
Pharmacol Res ; 189: 106684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740150

RESUMO

KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.


Assuntos
Fibrilação Atrial , Receptores sigma , Humanos , Células HEK293 , Pulmão/patologia , Artéria Pulmonar , Receptores sigma/metabolismo , Receptor Sigma-1
19.
J Nucl Cardiol ; 30(2): 653-661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35915325

RESUMO

BACKGROUND: We aimed to explore how the severity of myocardial ischemia affects myocardial sigma-1 receptor (Sig-1R) expression using 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (125I-OI5V) imaging. METHODS AND RESULTS: The left coronary artery was occluded for 30, 20, and 10 minute, to vary the severity of myocardial ischemia, followed by reperfusion. Dual-tracer autoradiography of the left ventricular short-axis slices was performed 3 and 7 days after reperfusion. 125I-OI5V was injected 30 minute before sacrifice and the area at risk (AAR) was evaluated by 99mTc-MIBI. Intense 125I-OI5V uptake was observed in the AAR and was significantly increased with increasing ischemia duration. To evaluate salvaged and nonsalvaged areas (preserved and decreased perfusion areas), triple-tracer autoradiography was performed 3 days after reperfusion. After dual-tracer autoradiography, 201Tl was injected 20 minute post 125I-OI5V injection. On triple-tracer autoradiography, the AAR/normally perfused area 125I-OI5V uptake ratio was positively correlated with the nonsalvaged area/whole left ventricular (LV) area ratio (P < .05). The AAR/normally perfused area 125I-OI5V uptake ratio was negatively correlated with the 201Tl uptake ratio of the AAR to normally perfused areas (P < .05). The comparison of the immunostaining distribution of 125I-OI5V and the macrophage marker CD68 revealed that 125I-OI5V was present mainly in, and immediately adjacent to the macrophage infiltration area. CONCLUSIONS: Significant 125I-OI5V uptake in the AAR depends on the duration of ischemia and reduced 201Tl uptake; furthermore, 125I-OI5V was found in and around the macrophage infiltrate area. These results indicate that iodine-labeled OI5V is a promising tool for visualizing Sig-1R expression according to the ischemic burden.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Radioisótopos de Tálio , Miocárdio , Receptor Sigma-1
20.
Mol Biol Rep ; 50(4): 3681-3691, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826683

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress plays an important role in the development of chronic kidney disease (CKD). Sigma-1 receptors (σ1Rs) are novel chaperone proteins that regulate ER stress. However, effect of σ1R activation on renal ER stress is yet unexplored. So, in the present study we investigated the effects of PRE-084, a σ1R agonist on renal injury and ER stress in the rat model of CKD. METHODS: CKD group rats were fed adenine for 28 days and CKD treatment group rats were additionally administered PRE-084 intraperitoneally at 1, 3 and 10 mg/kg body weight dose from Day 22-28. ER stress markers were evaluated using molecular biology techniques such as immunohistochemistry and Western blot. RESULTS: Marked kidney injury was observed in CKD rats as revealed by biochemical and histological findings. Expression of ER stress proteins such as phosphorylated protein kinase R-like ER kinase (p-PERK), cleaved activating transcription factor-6 (ATF-6f), phosphorylated inositol requiring enzyme1α (p-IRE1α) and caspase-12 were higher in CKD rats. Nevertheless, CKD rats treated with PRE-084 particularly at 10 mg/kg dose showed considerably lesser kidney injury along with higher expression of σ1R and marked reduction of all the ER stress proteins studied. CONCLUSION: Results reveal that PRE-084 likely ameliorated the adenine-induced kidney injury by lowering ER stress through increased σ1R expression.


Assuntos
Proteínas Serina-Treonina Quinases , Insuficiência Renal Crônica , Ratos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Rim/metabolismo , Estresse do Retículo Endoplasmático , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Proteínas de Choque Térmico/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA