Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.460
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38701782

RESUMO

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Assuntos
Epigênese Genética , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Bainha de Mielina/metabolismo , Humanos , Camundongos , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Rejuvenescimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Diferenciação Celular/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Masculino , Regeneração/efeitos dos fármacos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia
2.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846159

RESUMO

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromossomos/metabolismo , Ciprofloxacina/farmacologia , DNA/genética , Replicação do DNA/efeitos dos fármacos , Endonucleases/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Recombinantes , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Imagem Individual de Molécula , Espectrometria de Massas em Tandem , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento , Thermus thermophilus/ultraestrutura , Inibidores da Topoisomerase II/farmacologia
3.
Cell ; 179(4): 953-963.e11, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675501

RESUMO

Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Epigênese Genética , Nucleossomos/genética , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Linhagem da Célula/genética , Replicação do DNA/genética , Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional/genética
4.
Cell ; 174(5): 1095-1105.e11, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057112

RESUMO

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Íntrons , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Transcrição Gênica , Metilação de DNA , DNA Polimerase beta/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oligonucleotídeos Antissenso/genética , Fenótipo , Interferência de RNA , Transgenes , Expansão das Repetições de Trinucleotídeos
5.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262410

RESUMO

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 84(12): 2272-2286.e7, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851185

RESUMO

The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Domínio MADS , RNA Polimerase II , Terminação da Transcrição Genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cromatina/metabolismo , Cromatina/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Histonas/metabolismo , Histonas/genética , Histona Desacetilases
8.
Mol Cell ; 84(18): 3438-3454.e8, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39232583

RESUMO

Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Histonas , Nucleossomos , Complexo Repressor Polycomb 2 , Nucleossomos/metabolismo , Nucleossomos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Regulação da Expressão Gênica de Plantas , Cromatina/metabolismo , Cromatina/genética
9.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452766

RESUMO

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Assuntos
Processamento Alternativo , Complexo Repressor Polycomb 2 , Animais , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
10.
Mol Cell ; 84(17): 3175-3191.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39096900

RESUMO

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Inativação Gênica , Heterocromatina , Histona Desacetilases , Histonas , Nucleossomos , Heterocromatina/metabolismo , Heterocromatina/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Histonas/metabolismo , Histonas/genética , Acetilação , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Animais
11.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851186

RESUMO

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Histonas , Proteínas de Domínio MADS , Complexo Repressor Polycomb 2 , RNA Polimerase II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Transcrição Gênica , Poliadenilação , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Terminação da Transcrição Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
12.
Cell ; 167(2): 484-497.e9, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693359

RESUMO

PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs) and silence transposable elements in animal gonads. Here, we report the crystal structure of a silkworm PIWI-clade Argonaute, Siwi, bound to the endogenous piRNA, at 2.4 Å resolution. Siwi adopts a bilobed architecture consisting of N-PAZ and MID-PIWI lobes, in which the 5' and 3' ends of the bound piRNA are anchored by the MID-PIWI and PAZ domains, respectively. A structural comparison of Siwi with AGO-clade Argonautes reveals notable differences in their nucleic-acid-binding channels, likely reflecting the distinct lengths of their guide RNAs and their mechanistic differences in guide RNA loading and cleavage product release. In addition, the structure reveals that Siwi and prokaryotic, but not eukaryotic, AGO-clade Argonautes share unexpected similarities, such as metal-dependent 5'-phosphate recognition and a potential structural transition during the catalytic-tetrad formation. Overall, this study provides a critical starting point toward a mechanistic understanding of piRNA-mediated transposon silencing.


Assuntos
Proteínas Argonautas/química , Bombyx/metabolismo , Proteínas de Insetos/química , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/isolamento & purificação , Bombyx/química , Bombyx/genética , Linhagem Celular , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Inativação Gênica , Humanos , Proteínas de Insetos/isolamento & purificação , Conformação de Ácido Nucleico , RNA Interferente Pequeno/isolamento & purificação
13.
Cell ; 167(1): 219-232.e14, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662090

RESUMO

Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Edição de Genes/métodos , Inativação Gênica , Marcação de Genes/métodos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Engenharia Genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , Linfócitos T/metabolismo
14.
Annu Rev Cell Dev Biol ; 33: 555-575, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28693387

RESUMO

Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética , Loci Gênicos , Proteínas de Plantas/genética , Evolução Biológica , Flores/fisiologia
15.
Mol Cell ; 83(11): 1767-1785, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207657

RESUMO

Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Schizosaccharomyces/genética , Epigênese Genética
16.
Mol Cell ; 83(10): 1623-1639.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37164018

RESUMO

The HUSH complex recognizes and silences foreign DNA such as viruses, transposons, and transgenes without prior exposure to its targets. Here, we show that endogenous targets of the HUSH complex fall into two distinct classes based on the presence or absence of H3K9me3. These classes are further distinguished by their transposon content and differential response to the loss of HUSH. A de novo genomic rearrangement at the Sox2 locus induces a switch from H3K9me3-independent to H3K9me3-associated HUSH targeting, resulting in silencing. We further demonstrate that HUSH interacts with the termination factor WDR82 and-via its component MPP8-with nascent RNA. HUSH accumulates at sites of high RNAPII occupancy including long exons and transcription termination sites in a manner dependent on WDR82 and CPSF. Together, our results uncover the functional diversity of HUSH targets and show that this vertebrate-specific complex exploits evolutionarily ancient transcription termination machinery for co-transcriptional chromatin targeting and genome surveillance.


Assuntos
Inativação Gênica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Genoma/genética , RNA
17.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868189

RESUMO

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Íntrons , Diferenciação Celular , Inativação Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
18.
Mol Cell ; 83(7): 1075-1092.e9, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868228

RESUMO

A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.


Assuntos
Chaperonas de Histonas , Histonas , Humanos , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleossomos/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo
19.
Annu Rev Biochem ; 84: 405-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747396

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.


Assuntos
RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Inativação Gênica , Humanos
20.
Genes Dev ; 37(17-18): 801-817, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734835

RESUMO

Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of target genes in animals and plants. In Arabidopsis, PRC2 is required for the cold-induced epigenetic silencing of the FLC floral repressor locus to align flowering with spring. During this process, PRC2 relies on VEL accessory factors, including the constitutively expressed VRN5 and the cold-induced VIN3. The VEL proteins are physically associated with PRC2, but their individual functions remain unclear. Here, we show an intimate association between recombinant VRN5 and multiple components within a reconstituted PRC2, dependent on a compact conformation of VRN5 central domains. Key residues mediating this compact conformation are conserved among VRN5 orthologs across the plant kingdom. In contrast, VIN3 interacts with VAL1, a transcriptional repressor that binds directly to FLC These associations differentially affect their role in H3K27me deposition: Both proteins are required for H3K27me3, but only VRN5 is necessary for H3K27me2. Although originally defined as vernalization regulators, VIN3 and VRN5 coassociate with many targets in the Arabidopsis genome that are modified with H3K27me3. Our work therefore reveals the distinct accessory roles for VEL proteins in conferring cold-induced silencing on FLC, with broad relevance for PRC2 targets generally.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Flores/genética , Flores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA