Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717860

RESUMO

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Assuntos
Oxigênio , Oxigênio/metabolismo , Consumo de Oxigênio , Animais , Plâncton/metabolismo , Copépodes/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(19): 5909-14, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918397

RESUMO

Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.


Assuntos
Aldeídos/química , Ciclo do Carbono , Dióxido de Carbono/química , Atmosfera , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Carbono/química , Cromatografia Líquida de Alta Pressão , Lipase/química , Oceanos e Mares , Oxigênio/química , Fitoplâncton , Água do Mar , Espectrofotometria
3.
Ann Rev Mar Sci ; 16: 551-575, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37708423

RESUMO

Radionuclides can provide key information on the temporal dimension of environmental processes, given their well-known rates of radioactive decay and production. Naturally occurring radionuclides, such as 234Th and 210Po, have been used as powerful particle tracers in the marine environment to study particle cycling and vertical export. Since their application to quantify the magnitude of particulate organic carbon (POC) export in the 1990s, 234Th and, to a lesser extent, 210Po have been widely used to characterize the magnitude of the biological carbon pump (BCP). Combining both radionuclides, with their different half-lives, biogeochemical behaviors, and input sources to the ocean, can help to better constrain POC export and capture BCP dynamics that would be missed by a single tracer. Here, we review the studies that have simultaneously used 234Th and 210Po as tracers of POC export, emphasizing what can be learned from their joint application, and provide recommendations and future directions.


Assuntos
Carbono , Radioisótopos , Radioisótopos/análise , Carbono/análise , Oceanos e Mares
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365233

RESUMO

Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth's climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.


Assuntos
Microbiota , Água do Mar , Carbono , Sequestro de Carbono
5.
Water Res ; 229: 119368, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459894

RESUMO

Increased concentration of mercury, particularly methylmercury, in the environment is a worldwide concern because of its toxicity in severely exposed humans. Although the formation of methylmercury in oxic water columns has been previously suggested, there is no evidence of the presence of microorganisms able to perform this process, using the hgcAB gene pair (hgc+ microorganisms), in such environments. Here we show the prevalence of hgc+ microorganisms in sinking particles of the oxic water column of Lake Geneva (Switzerland and France) and its anoxic bottom sediments. Compared to anoxic sediments, sinking particles found in oxic waters exhibited relatively high proportion of hgc+genes taxonomically assigned to Firmicutes. In contrast hgc+members from Nitrospirae, Chloroflexota and PVC superphylum were prevalent in anoxic sediment while hgc+ Desulfobacterota were found in both environments. Altogether, the description of the diversity of putative mercury methylators in the oxic water column expand our understanding on MeHg formation in aquatic environments and at a global scale.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Água , Anaerobiose , Metilação , Sedimentos Geológicos
6.
Environ Pollut ; 291: 118034, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563851

RESUMO

Long term monitoring of atmospheric wet and dry depositions and associated nutrients fluxes was conducted on the coast of Japan facing the East China Sea continuously for 1 year and 2 months, with the origin of air mass investigated based on isotope analyses (Sr, Nd, and NO3). During the same period, intensive observations of ocean conditions and the chemical composition of sinking particles collected using sediment traps were conducted to investigate the effects of atmospheric deposition-derived nutrients on phytoplankton blooms. Dry-deposition-derived nutrient inputs to the surface ocean were larger during autumn to spring than in summer due to the effect of continental air mass occasionally carrying Asian dust (yellow sand). However, these nutrients fluxes were limited (1.1-1.5 mg-N m-2 day-1 on average) and didn't appear to cause phytoplankton blooms through the year. Although average dissolved inorganic nitrogen (DIN) concentrations in rainwater were lower in oceanic air masses compared to continental air masses, wet-deposition-derived nutrient inputs to the surface ocean on rainy days during the summer (26.0 mg-N m-2 day-1 on average) were large due to higher precipitation from oceanic air masses. Wet-deposition-derived nutrients significantly increased nutrient concentrations in the surface ocean and seemed to cause phytoplankton blooms in the warm rainy season when nutrients in the surface were depleted due to increased stratification. The increase in phytoplankton biomass was reflected in increased particle sinking into the bottom layer, as well as changing chemical characteristics. The supply of flesh phytoplankton-derived labile organic matter into the bottom layer could be expected to promote rapid bacterial decomposition and contribute to the formation of hypoxic water masses in early summer when the ocean was strongly stratified. Atmospheric deposition-derived nutrients in East Asia will have important impacts on not only the oligotrophic outer ocean but also surrounding coastal areas in the warm rainy season.


Assuntos
Monitoramento Ambiental , Nitrogênio , Japão , Nitrogênio/análise , Oceanos e Mares , Fitoplâncton
7.
J Environ Radioact ; 192: 208-218, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29982005

RESUMO

In this study, seabed sediment was collected from 26 stations located within 160 km from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) during the 2 years which followed the FDNPP accident of March 2011 and the concentrations of 129I and 137Cs were measured. By comparing the distribution of these two radionuclides with respect to their different geochemical behaviors in the environment, the transport of accident-derived radionuclides near the seafloor is discussed. The concentration of 129I in seabed sediment recovered from offshore Fukushima in 2011 ranged between 0.02 and 0.45 mBq kg-1, with 129I/137Cs activity ratios of (1.9 ±â€¯0.5) × 10-6 Bq Bq-1. The initial deposition of 129I to the seafloor in the study area was 0.36 ±â€¯0.13 GBq, and the general distribution of sedimentary 129I was established within 6 months after the accident. Although iodine is a biophilic element, the accident-derived 129I negligibly affects the benthic ecosystem. Until October 2013, a slight increase in activity of 129I in the surface sediment along the shelf-edge region (bottom depth: 200-400 m) was observed, despite that such a trend was not observed for 137Cs. The preferential increase of the 129I concentrations in the shelf-edge sediments was presumed to be affected by the re-deposition in the shelf-edge sediments of 129I desorbed from the contaminated coastal sediment. The results obtained from this study indicate that 129I/137Cs in marine particles is a useful indicator for tracking the secondary transport of accident-derived materials, particularly biophilic radionuclides, from the coast to offshore areas.


Assuntos
Sedimentos Geológicos/química , Radioisótopos do Iodo/análise , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Acidente Nuclear de Fukushima , Japão , Água do Mar/química
8.
Mar Pollut Bull ; 115(1-2): 67-74, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27908575

RESUMO

In the present study, we determined the common morphological characteristics of the feces of Mytilus galloprovincialis to develop a method for visually discriminating the feces of this mussel in deposited materials. This method can be used to assess the effect of mussel feces on benthic environments. The accuracy of visual morphology-based discrimination of mussel feces in deposited materials was confirmed by DNA analysis. Eighty-nine percent of mussel feces shared five common morphological characteristics. Of the 372 animal species investigated, only four species shared all five of these characteristics. More than 96% of the samples were visually identified as M. galloprovincialis feces on the basis of morphology of the particles containing the appropriate mitochondrial DNA. These results suggest that mussel feces can be discriminated with high accuracy on the basis of their morphological characteristics. Thus, our method can be used to quantitatively assess the effect of mussel feces on local benthic environments.


Assuntos
Fezes , Mytilus , Animais , DNA Mitocondrial/genética , Mytilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA