Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Curr Issues Mol Biol ; 46(1): 923-933, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275673

RESUMO

Due to its rising global prevalence, liver failure treatments are urgently needed. Sinomenine (SIN), an alkaloid from sinomenium acutum, is being studied for its liver-repair properties due to Acetaminophen (APAP) overdose. SIN's effect on APAP-induced hepatotoxicity in rats was examined histologically and biochemically. Three groups of 30 adult male Wistar rats were created: control, APAP-only, and APAP + SIN. Histopathological and biochemical analyses were performed on liver samples after euthanasia. SIN is significantly protected against APAP damage. Compared to APAP-only, SIN reduced cellular injury and preserved hepatocellular architecture. The APAP + SIN Group had significantly lower ALT, MDA, and GSH levels, protecting against hepatocellular damage and oxidative stress. SIN also had dose-dependent antioxidant properties. When examining critical regulatory proteins, SIN partially restored Sirtuin 1 (SIRT1) levels. While BMP-7 levels were unaffected, histopathological evidence and hepatocyte damage percentages supported SIN's liver-restorative effect. SIN protected and repaired rats' livers from APAP-induced liver injury. This study suggests that SIN may treat acute liver damage, warranting further research into its long-term effects, optimal dosage, and clinical applications. These findings aid liver-related emergency department interventions and life-saving treatments.

2.
Arch Biochem Biophys ; 753: 109928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354876

RESUMO

Sinomenine is a pure alkaloid isolated from Sinomenium acutum. This study is aimed to investigate the critical role of the nuclear factor erythroid 2-related factor 2 (Nrf2)-kelch-like ECH-associated protein-1(Keap1)-antioxidant response element (ARE) antioxidative signaling pathway in protecting sinomenine against H2O2-induced oxidative injury. Cytotoxicity and antioxidant experiments to initially determine the protective effects of sinomenine show that sinomenine has no effect on the decreased cell viability and presents similar potency in scavenging all three free radicals. The binding affinity between sinomenine and Keap1 was determined via fluorescence polarization assay, with IC50 of 13.52 µM. Quantum chemical calculation and theoretical simulation illustrated that sinomenine located into the Nrf2-binding site of Keap1 via hydrophobic and hydrogen interactions, showing high stability and binding affinity. On the basis of the stable binding of sinomenine with Keap1, sinomenine efficiently induced nuclear translocation of Nrf2, and increased in ARE activity in a concentration-dependent manner. Quantitative polymerase chain reaction provided further evidences that sinomenine-induced protection upregulated ARE-dependent genes, such as NAD(P)H quinone oxidoreductase 1, hemeoxygenase-1, and glutamate-cysteine ligase modifier subunit. Western blot confirmed that sinomenine increased the expressions of these antioxidative enzymes. Taken together, in vitro and in silico evaluations demonstrate that sinomenine inhibits the binding of Keap1 to Nrf2, promotes the nuclear accumulation of Nrf2 and thus leads to the upregulated expressions of Nrf2-dependent antioxidative genes. Our findings also highlight the use of sinomenine for pharmacological or therapeutic regulation of the Nrf2-Keap1-ARE system, which is a novel strategy to prevent the progression of oxidative injury.


Assuntos
Elementos de Resposta Antioxidante , Antioxidantes , Morfinanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , NADH NADPH Oxirredutases/genética
3.
Bioorg Med Chem Lett ; 97: 129545, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939862

RESUMO

Traditional Chinese medicine Qingfengteng primarily acquired from the dried canes of Sinomenium acutum (Thunb.) Rehd. et Wils. var. cinereum Rehd. et Wils. and S. acutum (Thunb.) Rehd. et Wils. For the therapeutic treatment of rheumatism, acute arthritis, and rheumatoid arthritis based on Qingfengteng, sinomenine hydrochloride was recently made the principal active ingredient in various dosage forms. 8-Bis(benzylthio)octanoic acid (CPI-613) was an orphan medicine that the FDA and EMA approved orphan for the treatment of certain resistant malignancies. Its unique mode of action and minimal toxicity toward normal tissues made for an apt pharmacophore. In order to expand the field of sinomenine anticancer structures, sinomenine/8-Bis(benzylthio)octanoic acid derivatives were designed and synthesized. Among them, target hybrids e4 stood out for having notable cytotoxic effects against cancer cell lines, especially for K562 cells, with IC50 values of 2.45 µM and high safety. In-depth investigations demonstrated that e4 caused apoptosis by stopping the cell cycle at G1 phase, and doing so by altering the morphology of the nucleus and causing membrane potential of the in mitochondria to collapse. These results indicated e4 exerted an antiproliferative effect through apoptosis induction via mitochondrial pathway.


Assuntos
Morfinanos , Caprilatos/farmacologia , Medicina Tradicional Chinesa , Morfinanos/farmacologia , Morfinanos/química
4.
J Nanobiotechnology ; 22(1): 383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951875

RESUMO

The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.


Assuntos
Artrite Reumatoide , Proliferação de Células , Grafite , Macrófagos , Morfinanos , Pontos Quânticos , Sinoviócitos , Morfinanos/farmacologia , Morfinanos/química , Animais , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Grafite/química , Grafite/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos Sprague-Dawley , Camundongos , Humanos , Células RAW 264.7 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
5.
J Sep Sci ; 47(1): e2300790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234029

RESUMO

Sinomenine is an active ingredient extracted from herb medicine, which has been prescribed to treat rheumatoid arthritis in clinics. The present work was to develop a simple method to simultaneously determine sinomenine and its metabolites desmethyl sinomenine and sinomenine N-oxide in rat plasma by liquid chromatography tandem mass spectrometry. Precursor-to-product transitions for detection were m/z 330.2 > 239.1 for sinomenine, m/z 316.2 > 239.1 for desmethyl-sinomenine, m/z 346.2 > 314.1 for sinomenine N-oxide and m/z 286.2 > 153.2 for morphine (internal standard), respectively. During the validation and sample quantification, an excellent linear calibration range was observed for all the analytes with correlation coefficients more than 0.999 (r > 0.99). The extraction recovery was more than 85%. No significant matrix effect and carryover were observed. The precision was less than 6.45%, whereas accuracy ranged from -4.10% to 7.23%. The validated method has been successfully applied to the pharmacokinetic study of sinomenine, desmethyl sinomenine, and sinomenine N-oxide in rat plasma after oral administration of sinomenine at a single dose of 5 mg/kg. The results suggested that sinomenine was rapidly metabolized into its metabolite desmethyl sinomenine and sinomenine N-oxide.


Assuntos
Morfinanos , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
6.
Inhal Toxicol ; 36(4): 217-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38713814

RESUMO

OBJECTIVE: The present work concentrated on validating whether sinomenine alleviates bleomycin (BLM)-induced pulmonary fibrosis, inflammation, and oxidative stress. METHODS: A rat model of pulmonary fibrosis was constructed through intratracheal injection with 5 mg/kg BLM, and the effects of 30 mg/kg sinomenine on pulmonary inflammation, fibrosis, apoptosis, and 4-hydroxynonenal density were evaluated by hematoxylin and eosin staining, Masson's trichrome staining, TUNEL staining, and immunohistochemistry. Hydroxyproline content and concentrations of inflammatory cytokines and oxidative stress markers were detected using corresponding kits. MRC-5 cells were treated with 10 ng/ml PDGF, and the effects of 1 mM sinomenine on cell proliferation were assessed by EdU assays. The mRNA expression of inflammatory cytokines and the protein levels of collagens, fibrosis markers, and key markers involved in the TLR4/NLRP3/TGFß signaling were tested with RT-qPCR and immunoblotting analysis. RESULTS: Sinomenine attenuated pulmonary fibrosis and inflammation while reducing hydroxyproline content and the protein expression of collagens and fibrosis markers in BLM-induced pulmonary fibrosis rats. Sinomenine reduced apoptosis in lung samples of BLM-challenged rats by increasing Bcl-2 and reducing Bax and cleaved caspase-3 protein expression. In addition, sinomenine alleviated inflammatory response and oxidative stress in rats with pulmonary fibrosis induced by BLM. Moreover, sinomenine inhibited the TLR4/NLRP3/TGFß signaling pathway in lung tissues of BLM-stimulated rats. Furthermore, TLR4 inhibitor, TAK-242, attenuated PDGF-induced fibroblast proliferation and collagen synthesis in MRC-5 cells. CONCLUSION: Sinomenine attenuates BLM-caused pulmonary fibrosis, inflammation, and oxidative stress by inhibiting the TLR4/NLRP3/TGFß signaling, indicating that sinomenine might become a therapeutic candidate to treat pulmonary fibrosis.


Assuntos
Bleomicina , Morfinanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Fibrose Pulmonar , Transdução de Sinais , Receptor 4 Toll-Like , Fator de Crescimento Transformador beta , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Bleomicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Linhagem Celular , Ratos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
7.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Morfinanos , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células A549 , Bleomicina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Morfinanos/farmacologia , Morfinanos/uso terapêutico , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Pharmacology ; 109(2): 76-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38290489

RESUMO

BACKGROUND: Cancer is a major cause of death worldwide. Although modern medicine has made strides in treatment, a complete cure for cancer remains elusive. SUMMARY: Utilization of medicinal plants in traditional medicine for the treatment of multiple diseases, including cancer, is a well-established practice. Sinomenine is an alkaloid extracted from a medicinal plant and has a diverse range of biological properties, including anti-oxidative, anti-inflammatory, and antibacterial effects. Sinomenine exhibits inhibitory effects on various types of tumor cells, including breast, lung, and liver cancers. The anticancer properties of sinomenine are believed to involve stimulation of apoptosis and autophagy as well as suppression of cell proliferation, invasion, and metastasis. KEY MESSAGE: This review summarizes the current research on sinomenine's potential as an anticancer agent, which may contribute to the discovery of more effective cancer treatments.


Assuntos
Antineoplásicos , Morfinanos , Neoplasias , Plantas Medicinais , Anti-Inflamatórios , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
9.
J Asian Nat Prod Res ; : 1-17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572941

RESUMO

In recent years, with sinomenine hydrochloride as the main ingredient, Qingfengteng had been formulated as various dosage forms for clinical treatment. Subsequent findings confirmed a variety of biological roles for sinomenine. Here, 15 H2S-donating sinomenine derivatives were synthesized. Target hybrids a11 displayed substantial cytotoxic effects on cancer cell lines, particularly against K562 cells, with an IC50 value of 1.36 µM. In-depth studies demonstrated that a11 arrested cell cycle at G1 phase, induced apoptosis via both morphological changes in nucleus and membrane potential collapse in mitochondria. These results indicated a11 exerted an antiproliferative effect through apoptosis induction via mitochondrial pathway.

10.
J Microencapsul ; 41(3): 157-169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451031

RESUMO

OBJECTIVE: To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS: SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS: The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION: SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.


Assuntos
Morfinanos , Nanopartículas , Absorção Cutânea , Portadores de Fármacos/química , Administração Cutânea , Pele/metabolismo , Nanopartículas/química , Lipídeos/química , Tamanho da Partícula
11.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062919

RESUMO

Sinomenine hydrochloride is an excellent drug with anti-inflammatory, antioxidant, immune-regulatory, and other functions. Atopic dermatitis is an inherited allergic inflammation that causes itchiness, redness, and swelling in the affected area, which can have a significant impact on the life of the patient. There are many therapeutic methods for atopic dermatitis, and sinomenine with immunomodulatory activity might be effective in the treatment of atopic dermatitis. In this study, the atopic dermatitis model was established in experimental mice, and physical experiments were carried out on the mice. In the experiment, sinomenine hydrochloride liposomes-in-hydrogel as a new preparation was selected for delivery. In this case, liposomes were dispersed in the colloidal hydrogel on a mesoscopic scale and could provide specific transfer properties. The results showed that the sinomenine hydrochloride-loaded liposomes-in-hydrogel system could effectively inhibit atopic dermatitis.


Assuntos
Antioxidantes , Dermatite Atópica , Hidrogéis , Lipossomos , Morfinanos , Morfinanos/farmacologia , Morfinanos/química , Morfinanos/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Lipossomos/química , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Hidrogéis/química , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C
12.
Inflammopharmacology ; 32(2): 1387-1400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430414

RESUMO

Atherosclerosis, a multifaceted and persistent inflammatory condition, significantly contributes to the progression of cardiocerebrovascular disorders, such as myocardial infarctions and cerebrovascular accidents. It involves the accumulation of cholesterol, fatty deposits, calcium and cellular debris in the walls of arteries, leading to the formation of plaques. Our aim is to investigate the potential of sinomenine to counteract atherosclerosis in mice lacking Apolipoprotein E (ApoE-/-) Mice. We employed the high-fat diet-induced method to induce atherosclerosis in ApoE-/- mice, and the mice were treated with sinomenine (5, 10, and 15 mg/kg) and simvastatin (0.5 mg/kg) for 12 weeks. Body weight, water intake, and food intake were assessed. Lipid parameters, oxidative stress, inflammatory cytokines, and mRNA levels were estimated. Sinomenine treatment remarkably (P < 0.001) suppressed body weight, along with food and water intake. Sinomenine altered the levels of total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), which were modulated in the atherosclerosis group. Sinomenine treatment also altered the levels of oxidative stress parameters such as glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). In addition, it modulated cardiac parameters like C-reactive protein (CRP), endothelin-1 (ET-1), thromboxane B2 (TXB2), nitric oxide (NO), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatinine kinase isoenzymes (CK-MB). Inflammatory cytokines interleukin (IL)-1α, IL-1ß, TNF-α, IL-6, and IL-10 were also affected. Sinomenine further suppressed the mRNA expression of IL-6, IL-17, IL-10, tumor necrosis factor-α (TNF-α), Il-1ß, monocyte chemoattractant protein-1 (MCP-1), MCP-2, MCP-3, transforming Growth Factor-1ß (TGF-1ß), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). The results suggest that sinomenine remarkably suppressed the development of atherosclerosis in the early stage.


Assuntos
Aterosclerose , Interleucina-10 , Morfinanos , Animais , Camundongos , Apolipoproteínas , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Peso Corporal , Colesterol , Citocinas , Interleucina-6 , Lipoproteínas LDL , Camundongos Knockout , Camundongos Knockout para ApoE , RNA Mensageiro , Fator de Necrose Tumoral alfa/metabolismo
13.
Inflammopharmacology ; 32(3): 2007-2022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573363

RESUMO

BACKGROUND: Dextran Sulfate Sodium (DSS) induces ulcerative colitis (UC), a type of inflammatory bowel disease (IBD) that leads to inflammation, swelling, and ulcers in the large intestine. The aim of this experimental study is to examine how sinomenine, a plant-derived alkaloid, can prevent or reduce the damage caused by DSS in the colon and rectum of rats. MATERIAL AND METHODS: Induction of ulcerative colitis (UC) in rats was achieved by orally administering a 2% Dextran Sulfate Sodium (DSS) solution, while the rats concurrently received oral administrations of sinomenine and sulfasalazine. The food, water intake was estimated. The body weight, disease activity index (DAI), colon length and spleen index estimated. Antioxidant, cytokines, inflammatory parameters and mRNA expression were estimated. The composition of gut microbiota was analyzed at both the phylum and genus levels in the fecal samples obtained from all groups of rats. RESULTS: Sinomenine treatment enhanced the body weight, colon length and reduced the DAI, spleen index. Sinomenine treatment remarkably suppressed the level of NO, MPO, ICAM-1, and VCAM-1 along with alteration of antioxidant parameters such as SOD, CAT, GPx, GR and MDA. Sinomenine treatment also decreased the cytokines like TNF-α, IL-1, IL-1ß, IL-6, IL-10, IL-17, IL-18 in the serum and colon tissue; inflammatory parameters viz., PAF, COX-2, PGE2, iNOS, NF-κB; matrix metalloproteinases level such as MMP-1 and MMP-2. Sinomenine significantly (P < 0.001) enhanced the level of HO-1 and Nrf2. Sinomenine altered the mRNA expression of RIP1, RIP3, DRP3, NLRP3, IL-1ß, caspase-1 and IL-18. Sinomenine remarkably altered the relative abundance of gut microbiota like firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia, and Actinobacteria. CONCLUSION: The results clearly indicate that sinomenine demonstrated a protective effect against DSS-induced inflammation, potentially through the modulation of inflammatory pathways and gut microbiota.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Morfinanos , Fator 2 Relacionado a NF-E2 , Animais , Morfinanos/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Ratos Wistar , Anti-Inflamatórios/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia
14.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276618

RESUMO

Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.


Assuntos
Alcaloides , Morfinanos , Masculino , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Morfinanos/farmacologia , Serina-Treonina Quinases TOR , Alcaloides/farmacologia
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1947-1955, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812207

RESUMO

This study aims to decipher the mechanism of sinomenine in inhibiting platelet-derived growth factor/platelet-derived growth factor receptor(PDGF/PDGFR) signaling pathway in rheumatoid arthritis-fibroblast-like synoviocyte(RA-FLS) migration induced by neutrophil extracellular traps(NETs). RA-FLS was isolated from the synovial tissue of 3 RA patients and cultured. NETs were extracted from the peripheral venous blood of 4 RA patients and 4 healthy control(HC). RA-FLS was classified into control group, HC-NETs group, RA-NETs group, RA-NETs+sinomenine group and RA-NETs+sinomenine+CP-673451 group. RNA-sequencing(RNA-seq) was conducted to identify the differentially expressed genes between HC-NETs and RA-NETs groups. Sangerbox was used to perform the Gene Ontology(GO) function and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape was employed to build the protein-protein interaction(PPI) network. AutoDock Vina and PyMOL were used for molecular docking of sinomenine with PDGFß and PDGFRß. The cell proliferation and migration were determined by the cell counting kit-8(CCK-8) and cell scratch assay, respectively. Western blot was employed to determine the protein level of PDGFRß. Real-time quantitative polymerase chain reaction(RT-qPCR) was carried out to determine the mRNA levels of matrix metalloproteinases(MMPs). The results revealed that neutrophils in RA patients were more likely to produce NETs. Compared with HC-NETs group, RA-NETs group showed up-regulated expression of PDGFß and PDGFRß. Compared with control group, RA-NETs group showed increased cell proliferation and migration and up-regulated protein level of PDGFRß and mRNA levels of PDGFß, PDGFRß, MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs group, RA-NETs+sinomenine group presented decreased cell proliferation and migration and down-regulated protein and mRNA level of PDGFRß and mRNA levels of MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs+sinomenine group, the proliferation ability of RA-NETs+sinomenine+CP-673451 group decreased(P<0.05). The findings prove that sinomenine reduces the RA-NETs-induced RA-FLS migration by inhibiting PDGF/PDGFR signaling pathway, thus mitigating RA.


Assuntos
Artrite Reumatoide , Movimento Celular , Morfinanos , Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Sinoviócitos , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Morfinanos/farmacologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Masculino , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
16.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482570

RESUMO

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Interleucina-18/efeitos adversos , Receptores Purinérgicos P2X7/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas de Ligação ao GTP
17.
Phytother Res ; 37(8): 3323-3341, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036428

RESUMO

Recent years have witnessed a growing research interest in traditional Chinese medicine as a neuroprotective nutrient in the management of diabetic cognitive dysfunction. However, the underlying molecular mechanisms of sinomenine in mediating ferroptosis of hippocampal neurons have been poorly understood. This study sought to decipher the potential effect and molecular mechanism of sinomenine in the cognitive dysfunction following type 2 diabetes mellitus (T2DM). Multi-omics analysis was conducted to identify the microbiota-gut-brain axis in T2DM patient samples obtained from the publicly available database. In HT-22 cells, erastin was utilized to create a ferroptosis model, and streptozotocin was injected intraperitoneally to create a rat model of DM. It was noted that intestinal flora imbalance occurred in patients with T2DM-associated cognitive dysfunction. Sinomenine could reduce Erastin-induced hippocampus neuronal ferroptosis by increasing EGF expression. EGF protected hippocampal neurons against ferroptosis by activating the Nrf2/HO-1 signaling pathway. Furthermore, in vivo results confirmed that sinomenine blocked ferroptosis of hippocampal neurons and alleviated cognitive dysfunction in T2DM rats. Collectively, these results suggest that sinomenine confers neuroprotective effects by curtailing hippocampal neuron ferroptosis via the EGF/Nrf2/HO-1 signaling and microbiota-gut-brain axis. It may be a candidate for the treatment of diabetic cognitive dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Ratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Eixo Encéfalo-Intestino , Fator de Crescimento Epidérmico , Fator 2 Relacionado a NF-E2 , Neurônios , Transdução de Sinais , Hipocampo , Cognição
18.
Environ Toxicol ; 38(10): 2524-2537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37436133

RESUMO

BACKGROUND: This study attempts to investigate the therapeutic effect of sinomenine on renal fibrosis and its mechanism. METHODS: The 8-week-old C57BL/6 male mice were randomly divided into sham group, UUO model group, UUO sinomenine group (UUO + Sino 50), UUO + sinomenine group (UUO + Sino 100), UUO + exosome group (exo), and UUO + exo-inhibitor. The pathological changes of kidney were observed by H&E staining, the degree of renal interstitial fibrosis was detected by MASSON and Sirius red staining, and the expressions of fibrosis and autophagy markers were detected by real-time fluorescence quantitative PCR and WB. NTA and electron microscopy were used to analyze exo secretion after sinomenine treatment. RESULTS: Sinomenine could improve the progression of renal fibrosis without causing tissue damage including heart, lungs and liver. Sinomenine could promote autophagosome formation. It could promote the secretion of exosomes from bone marrow mesenchymal stem cells (BMSCs). Sinomine regulates the PI3K-AKT pathway through BMSC-exo carrying miR-204-5p, affecting autophagy level and alleviating the process of renal fibrosis. CONCLUSION: Our study suggests that sinomine could improve the progression of renal fibrosis by influencing the expression of miR-204-5p in BMSC-exo and regulating the PI3K-AKT pathway.


Assuntos
Exossomos , Nefropatias , Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Exossomos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Nefropatias/metabolismo , Fibrose , Autofagia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
19.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677863

RESUMO

Benign prostatic hyperplasia (BPH) is a chronic disease that affects the quality of life of older males. Sinomenine hydrochloride (SIN) is the major bioactive alkaloid isolated from the roots of the traditional Chinese medicinal plant Sinomenium acutum Rehderett Wilson. We wondered if the SIN administration exerted a regulatory effect on BPH and its potential mechanism of action. Mice with testosterone propionate-induced BPH subjected to bilateral orchiectomy were employed for in vivo experiments. A human BPH cell line (BPH-1) was employed for in vitro experiments. SIN administration inhibited the proliferation of BPH-1 cells (p < 0.05) by regulating the expression of androgen-related proteins (steroid 5-alpha reductase 2 (SRD5A2), androgen receptors, prostate-specific antigen), apoptosis-related proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax)) and proliferation-related proteins (proliferating cell nuclear antigen (PCNA), mammalian target of rapamycin, inducible nitric oxide synthase) in vitro. SIN administration decreased the prostate-gland weight coefficient (p < 0.05) and improved the histological status of mice suffering from BPH. The regulatory effects of SIN administration on SRD5A2, an apoptosis-related protein (Bcl-2), and proliferation-related proteins (PCNA, matrix metalloproteinase-2) were consistent with in vitro data. SIN exerted a therapeutic effect against BPH probably related to lowering the SRD5A2 level and regulating the balance between the proliferation and apoptosis of cells. Our results provide an important theoretical basis for the development of plant medicines for BPH therapy.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Apoptose , Proliferação de Células , Colestenona 5 alfa-Redutase/metabolismo , Metaloproteinase 2 da Matriz , Proteínas de Membrana , Extratos Vegetais/farmacologia , Antígeno Nuclear de Célula em Proliferação , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Qualidade de Vida , Testosterona/farmacologia
20.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3786-3792, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475070

RESUMO

A fluorescence endoscopic laser confocal microscope(FELCM) was used to direct the injection of sinomenine solid lipid nanoparticles(Sin-SLN) into the joint, and the in vitro effectiveness of Sin-SLN in the treatment of rheumatoid arthritis(RA) was evaluated. Sin-SLN was prepared with the emulsion evaporation-low temperature curing method. The Sin-SLN prepared under the optimal conditions showed the encapsulation efficiency of 64.79%±3.12%, the drug loading of 3.84%±0.28%, the average particle size of(215.27±4.21) nm, and the Zeta potential of(-32.67±0.84) mV. Moreover, the Sin-SLN demonstrated good stability after sto-rage for 30 days. The rabbit model of RA was established by the subcutaneous injection of ovalbumin and complete Freund's adjuvant. Five groups were designed, including a control group, a model group, a Sin(1.5 mg·kg~(-1)) group, a Sin-SLN(1.5 mg·kg~(-1)) group, and a dexamethasone(positive drug, 1.0 mg·kg~(-1), ig) group. The control group and the model group only received puncture treatment without drug injection. After drug administration, the local skin temperature and knee joint diameter were monitored every day. The knee joint diameter and the local skin temperature were lower in the drug administration groups than in the model group(P<0.05, P<0.01). FELCM recorded the morphological alterations of the cartilage of knee joint. The Sin-SLN group showed compact tissue structure and smooth surface of the cartilage. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the serum le-vels of interleukin-1(IL-1) and tumor necrosis factor-α(TNF-α). The findings revealed that the Sin-SLN group had lower IL-1 and TNF-α levels than the model group(P<0.05, P<0.01). Hematoxylin-eosin(HE) staining was employed to reveal the pathological changes of the synovial tissue, which were significantly mitigated in the Sin-SLN group. The prepared Sin-SLN had uniform particle size and high stability. Through joint injection administration, a drug reservoir was formed. Sin-SLN effectively alleviate joint swelling and cartilage damage of rabbit, down-regulated the expression of inflammatory cytokines, and inhibited the epithelial proliferation and inflammatory cell infiltration of the synovial tissue, demonstrating the efficacy in treating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Coelhos , Fator de Necrose Tumoral alfa , Fluorescência , Artrite Reumatoide/tratamento farmacológico , Interleucina-1 , Artrite Experimental/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA