Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(52): e2213633119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36538478

RESUMO

Understanding the nature and formation of band gaps associated with the propagation of electromagnetic, electronic, or elastic waves in disordered materials as a function of system size presents fundamental and technological challenges. In particular, a basic question is whether band gaps in disordered systems exist in the thermodynamic limit. To explore this issue, we use a two-stage ensemble approach to study the formation of complete photonic band gaps (PBGs) for a sequence of increasingly large systems spanning a broad range of two-dimensional photonic network solids with varying degrees of local and global order, including hyperuniform and nonhyperuniform types. We discover that the gap in the density of states exhibits exponential tails and the apparent PBGs rapidly close as the system size increases for nearly all disordered networks considered. The only exceptions are sufficiently stealthy hyperuniform cases for which the band gaps remain open and the band tails exhibit a desirable power-law scaling reminiscent of the PBG behavior of photonic crystals in the thermodynamic limit.


Assuntos
Eletrônica , Memória , Fótons , Registros , Termodinâmica
2.
J Anim Ecol ; 93(5): 619-631, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556757

RESUMO

Bats are known for their gregarious social behaviour, often congregating in caves and underground habitats, where they play a pivotal role in providing various ecosystem services. Studying bat behaviour remains an underexplored aspect of bat ecology and conservation despite its ecological importance. We explored the costs and impacts of overcrowding on bat social behaviour. This study examined variations in bat behavioural patterns between two distinct groups, aggregated and non-aggregated male Rousettus amplexicaudatus, within the Monfort Bat Cave Sanctuary on Mindanao Island, Philippines. We found significant variations in the incident frequencies of various bat behavioural activities, particularly aggression and movement, between these two groups. The increase in aggregation was closely related to negative social behaviour among bats. In contrast, sexual behaviour was significantly related to the positive behaviour of individual bats and was headed in less crowded areas. The disparities in bat behaviour with an apparent decline in bat social behaviour because of overcrowding, with more aggressive behaviours emerging, align with the 'behavioural sink' hypothesis. Our study underscores the importance of considering habitat quality and resource availability in the management and conservation of bat colonies, as these factors can reduce the occurrence of aggressive and negative social behaviours in colonies with high population density by providing alternative habitats.


Assuntos
Cavernas , Quirópteros , Comportamento Social , Animais , Quirópteros/fisiologia , Masculino , Agressão , Comportamento Animal , Filipinas , Aglomeração , Ecossistema , Comportamento Sexual Animal
3.
Biol Lett ; 20(5): 20240002, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38689558

RESUMO

Group living may entail local resource competition (LRC) which can be reduced if the birth sex ratio (BSR) is biased towards members of the dispersing sex who leave the group and no longer compete locally with kin. In primates, the predicted relationship between dispersal and BSR is generally supported although data for female dispersal species are rare and primarily available from captivity. Here, we present BSR data for Phayre's leaf monkeys (Trachypithecus phayrei crepusculus) at the Phu Khieo Wildlife Sanctuary, Thailand (N = 104). In this population, nearly all natal females dispersed, while natal males stayed or formed new groups nearby. The slower reproductive rate in larger groups suggests that food can be a limiting resource. In accordance with LRC, significantly more females than males were born (BSR 0.404 males/all births) thus reducing future competition with kin. This bias was similar in 2-year-olds (no sex-differential mortality). It became stronger in adults, supporting our impression of particularly fierce competition among males. To better evaluate the importance of BSR, more studies should report sex ratios throughout the life span, and more data for female dispersal primates need to be collected, ideally for multiple groups of different sizes and for several years.


Assuntos
Comportamento Competitivo , Razão de Masculinidade , Animais , Feminino , Masculino , Tailândia , Comportamento Competitivo/fisiologia , Distribuição Animal , Reprodução/fisiologia
4.
Demography ; 61(4): 1117-1142, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39016630

RESUMO

In this article, we reconstruct prospective intergenerational educational mobility and explore fertility's role in this process for women born between 1925 and 1950 in 12 European countries. We do so by combining high-quality retrospective data (Generations and Gender Survey) and low-requirement prospective datasets using an inferential method developed and advanced in prior research. Our analysis shows that the negative educational fertility gradient partly compensates for the inequality in prospective mobility rates between lower and higher educated women and is most pronounced in high-inequality contexts. However, fertility's role is small and declining and thus does not account for much of the differences in mobility rates between countries. We also explore the relative importance of sibship size effects in mediating the effect of fertility gradient, finding it negligible. Finally, we explore the correspondence between prospective and retrospective estimates in the reconstruction of prospective mobility rates and suggest why the former, when available, must be preferred.


Assuntos
Escolaridade , Humanos , Feminino , Europa (Continente) , Estudos Prospectivos , Adulto , Fatores Socioeconômicos , Coeficiente de Natalidade/tendências , Estudos Retrospectivos , Mobilidade Social/estatística & dados numéricos , Pessoa de Meia-Idade , Relação entre Gerações
5.
Nano Lett ; 23(23): 10682-10686, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38033298

RESUMO

Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.

6.
Nano Lett ; 23(5): 1752-1757, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825889

RESUMO

The superconductor PdTe2 is known to host bulk Dirac bands and topological surface states. The coexistence of superconductivity and topological surface states makes PdTe2 a promising platform for exploring topological superconductivity and Majorana bound states. In this work, we report the spectroscopic characterization of ultrathin PdTe2 films with thickness down to three monolayers (ML). In the 3 ML PdTe2 film, we observed spin-polarized surface resonance states, which are isolated from the bulk bands due to the quantum size effects. In addition, the hybridization of surface states on opposite faces leads to a thickness-dependent gap in the topological surface Dirac bands. Our photoemission results show clearly that the size of the hybridization gap increases as the film thickness is reduced. The observation of isolated surface resonances and gapped topological surface states sheds light on the applications of PdTe2 quantum films in spintronics and topological quantum computation.

7.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998976

RESUMO

AgCu bimetallic· nanoparticles (NPs) represent a novel class of inorganic, broad-spectrum antimicrobial agents that offer enhanced antimicrobial effectiveness and reduced cytotoxicity compared to conventional Ag NP antibacterial materials. This study examines the antimicrobial performance and structural characteristics of AgCu nanoparticles (NPs) synthesized via two distinct chemical reduction processes using PVP-PVA as stabilizers. Despite identical chemical elements and sphere-like shapes in both synthesis methods, the resulting AgCu nanoparticles exhibited significant differences in size and antimicrobial properties. Notably, AgCu NPs with smaller average particle sizes demonstrated weaker antimicrobial activity, as assessed by the minimum inhibitory concentration (MIC) measurement, contrary to conventional expectations. However, larger average particle-sized AgCu NPs showed superior antimicrobial effectiveness. High-resolution transmission electron microscopy analysis revealed that nearly all larger particle-sized nanoparticles were AgCu nanoalloys. In contrast, the smaller particle-sized samples consisted of both AgCu alloys and monometallic Ag and Cu NPs. The fraction of Ag ions (relative to the total silver amount) in the larger AgCu NPs was found to be around 9%, compared to only 5% in that of the smaller AgCu NPs. This indicates that the AgCu alloy content significantly contributes to enhanced antibacterial efficacy, as a higher AgCu content results in the increased release of Ag ions. These findings suggest that the enhanced antimicrobial efficacy of AgCu NPs is primarily attributed to their chemical composition and phase structures, rather than the size of the nanoparticles.


Assuntos
Ligas , Cobre , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Cobre/química , Nanopartículas Metálicas/química , Ligas/química , Ligas/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
8.
J Sci Food Agric ; 104(14): 8480-8491, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39031780

RESUMO

BACKGROUND: Nanotechnology has been widely applied in agricultural science. During the process of reducing metal toxicity and accumulation in rice, nanomaterials exhibit size effects. However, there is limited knowledge regarding these size effects. We aim to explore the impact of fertilizer with various sizes of ZnO nanoparticles (ZnO-NPs) on rice growth and cadmium (Cd) accumulation and to elucidate the potential mechanism of Cd reduction in rice. Foliar applications of different concentrations (0.5 and 2 mmol L-1) and different sizes (30 and 300 nm ZnO-NPs) of zinc (Zn) fertilizer (Zn(NO3)2) were performed to investigate the effects on rice growth, Cd accumulation and subcellular distribution, and the expression of Zn-Cd transport genes. RESULTS: The results suggested that all the foliar sprayings can significantly reduce the Cd concentrations in rice grains by 41-61% with the highest reduction in the application of ZnO-NPs with large size and low concentration. This is related to the enhancement of Cd fixation in leaf cell walls and downregulation of Cd transport genes (OsZIP7, OsHMA2, OsHMA3) in stem nodes. Foliar ZnO-NPs applications can increase the Zn concentration in grains by 9-21%. Foliar applications of Zn(NO3)2 and small-sized ZnO-NPs promoted plant growth and rice yield, while the application of large-sized ZnO-NPs significantly reduced rice growth and yield. CONCLUSION: The study suggests that the rice yield and Cd reduction are dependent on the size and concentration of foliar spraying and the use of large-sized ZnO-NPs is the most effective strategy when considering both yield and Cd reduction comprehensively. © 2024 Society of Chemical Industry.


Assuntos
Cádmio , Fertilizantes , Oryza , Folhas de Planta , Proteínas de Plantas , Óxido de Zinco , Zinco , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/química , Cádmio/metabolismo , Fertilizantes/análise , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Zinco/metabolismo , Óxido de Zinco/metabolismo , Óxido de Zinco/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tamanho da Partícula , Poluentes do Solo/metabolismo
9.
Small ; 19(50): e2207779, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36938897

RESUMO

The enhanced properties of nanomaterials make them attractive for advanced high-performance materials, but their role in promoting toughness has been unclear. Fabrication challenges often prevent the proper organization of nanomaterial constituents, and inadequate testing methods have led to a poor knowledge of toughness at small scales. In this work, the individual roles of nanomaterials and nanoarchitecture on toughness are quantified by creating lightweight materials made from helicoidal polymeric nanofibers (nano-Bouligand). Unidirectional ( θ $\theta $  = 0°) and nano-Bouligand beams ( θ $\theta $  = 2°-90°) are fabricated using two-photon lithography and are designed in a micro-single edge notch bend (µ-SENB) configuration with relative densities ρ ¯ $\overline \rho $ between 48% and 81%. Experiments demonstrate two unique toughening mechanisms. First, size-enhanced ductility of nanoconfined polymer fibers increases specific fracture energy by 70% in the 0° unidirectional beams. Second, nanoscale stiffness heterogeneity created via inter-layer fiber twisting impedes crack growth and improves absolute fracture energy dissipation by 48% in high-density nano-Bouligand materials. This demonstration of size-enhanced ductility and nanoscale heterogeneity as coexisting toughening mechanisms reveals the capacity for nanoengineered materials to greatly improve mechanical resilience in a new generation of advanced materials.

10.
Phys Biol ; 20(5)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37369222

RESUMO

Coarse-grained descriptions of collective motion of flocking systems are often derived for the macroscopic or the thermodynamic limit. However, the size of many real flocks falls within 'mesoscopic' scales (10 to 100 individuals), where stochasticity arising from the finite flock sizes is important. Previous studies on mesoscopic models have typically focused on non-spatial models. Developing mesoscopic scale equations, typically in the form of stochastic differential equations, can be challenging even for the simplest of the collective motion models that explicitly account for space. To address this gap, here, we take a novel data-driven equation learning approach to construct the stochastic mesoscopic descriptions of a simple, spatial, self-propelled particle (SPP) model of collective motion. In the spatial model, a focal individual can interact withkrandomly chosen neighbours within an interaction radius. We considerk = 1 (called stochastic pairwise interactions),k = 2 (stochastic ternary interactions), andkequalling all available neighbours within the interaction radius (equivalent to Vicsek-like local averaging). For the stochastic pairwise interaction model, the data-driven mesoscopic equations reveal that the collective order is driven by a multiplicative noise term (hence termed, noise-induced flocking). In contrast, for higher order interactions (k > 1), including Vicsek-like averaging interactions, models yield collective order driven by a combination of deterministic and stochastic forces. We find that the relation between the parameters of the mesoscopic equations describing the dynamics and the population size are sensitive to the density and to the interaction radius, exhibiting deviations from mean-field theoretical expectations. We provide semi-analytic arguments potentially explaining these observed deviations. In summary, our study emphasises the importance of mesoscopic descriptions of flocking systems and demonstrates the potential of the data-driven equation discovery methods for complex systems studies.


Assuntos
Movimento (Física)
11.
Chemistry ; 29(56): e202301596, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497808

RESUMO

Liquid exfoliation can be considered as a viable approach for the scalable production of 2D materials due to its various benefits, although the polydispersity in the obtained nanosheet size hinders their straightforward incorporation. Size-separation can help alleviate these concerns, however a correlation between nanosheet size and property needs to be established to bring about size-specific applicability. Herein, size-selected aqueous nanosheet dispersions have been obtained via centrifugation-based protocols, and their chemical activity in the spontaneous reduction of chloroplatinic acid is investigated. Growth of ultrasmall Pt nanoparticles was achieved on nanosheet surfaces without a need for reducing agents, and stark differences in the nanoparticle coverage were observed as a function of nanosheet size. Defects in the nanosheets were probed via Raman spectroscopy, and correlated to the observed size-activity. Additionally, the effect of reaction temperature during synthesis was investigated. The electrochemical activity of the ultrasmall Pt nanoparticle decorated MoS2 nanosheets was evaluated for the hydrogen evolution reaction, and enhancement in performance was observed with nanosheet size, and nanoparticle decoration density. These findings shine light on the significance of nanosheet size in controlling spontaneous reduction reactions, and provide a deeper insight to intrinsic properties of liquid exfoliated nanosheets.

12.
Chemphyschem ; 24(6): e202200769, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36420565

RESUMO

The gas-phase clusters reaction permits addressing fundamental aspects of the challenges related to C-H activation. The size effect plays a key role in the activation processes as it may substantially affect both the reactivity and selectivity. In this paper, we reviewed the size effect related to the hydrocarbon oxidation by early transition metal oxides and main group metal oxides, methane activation mediated by late transition metals. Based on mass-spectrometry experiments in conjunction with quantum chemical calculations, mechanistic discussions were reviewed to present how and why the size greatly regulates the reactivity and product distribution.

13.
Entropy (Basel) ; 25(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37509930

RESUMO

We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization.

14.
Small ; 18(29): e2201558, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35748217

RESUMO

Nanozymes exhibiting antioxidant activity are beneficial for the treatment of oxidative stress-associated diseases. Ruthenium nanoparticles (RuNPs) with multiple enzyme-like activities have attracted growing attention, but the relatively low antioxidant enzyme-like activities hinder their practical biomedical applications. Here, a size regulation strategy is presented to significantly boost the antioxidant enzyme-like activities of RuNPs. It is found that as the size of RuNPs decreases to ≈2.0 nm (sRuNP), the surface-oxidized Ru atoms become dominant, thus possessing an unprecedentedly boosted antioxidant activity as compared to medium-sized (≈3.9 nm) or large-sized counterparts (≈5.9 nm) that are mainly composed of surface metallic Ru atoms. Notably, based on their antioxidant enzyme-like activities and ultrasmall size, sRuNP can not only sustainably ameliorate oxidative stress but also upregulate regulatory T cells in late-stage acetaminophen (APAP)-induced liver injury (ALI). Consequently, sRuNPs perform highly efficient therapeutic efficiency on ALI mice even when treated at 6 h after APAP intoxication. This strategy is insightful for tuning the catalytic performances of nanozymes for their extensive biomedical applications.


Assuntos
Nanopartículas , Rutênio , Acetaminofen , Animais , Antioxidantes/farmacologia , Fígado , Camundongos , Rutênio/farmacologia , Linfócitos T Reguladores
15.
J Membr Biol ; 255(4-5): 437-449, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35854128

RESUMO

Molecular dynamics simulations are an attractive tool for understanding lipid/peptide self-assembly but can be plagued by inaccuracies when the system sizes are too small. The general guidance from self-assembly simulations of homogeneous micelles is that the total number of surfactants should be three to five times greater than the equilibrium aggregate number of surfactants per micelle. Herein, the heuristic is tested on the more complicated self-assembly of lipids and amphipathic peptides using the Cooke and Martini 3 coarse-grained models. Cooke model simulations with 50 to 1000 lipids and no peptide are dominated by finite-size effects, with usually one aggregate (micelle or nanodisc) containing most of the lipids forming at each system size. Approximately 200 systems of different peptide/lipid (P/L) ratios and sizes of up to 1000 lipids yield a "finite-size phase diagram" for peptide driven self-assembly, including a coexistence region of micelles and discs. Insights from the Cooke model are applied to the assembly of dimyristoylphosphatidylcholine and the ELK-neutral peptide using the Martini 3 model. Systems of 150, 450, and 900 lipids with P/L = 1/6.25 form mixtures of lipid-rich discs that agree in size with experiment and peptide-rich micelles. Only the 150-lipid system shows finite-size effects, which arise from the long-tailed distribution of aggregate sizes. The general rule of three to five times the equilibrium aggregate size remains a practical heuristic for the Cooke and Martini 3 systems investigated here.


Assuntos
Dimiristoilfosfatidilcolina , Micelas , Dimiristoilfosfatidilcolina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Tensoativos
16.
Chemistry ; 28(49): e202201136, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703124

RESUMO

The size and doping effects in methane activation by Ti-Si-O clusters have been explored by using a combination of gas-phase experiments and quantum chemical calculations. All [Tim Sin O2(m+n) ].+ (m+n=2, 3, 8, 10, 12, 14) clusters can extract a hydrogen from methane. The associated energies and structures have been revealed in detail. Moreover, the doping and size effects have been discussed involving generalized Kohn-Sham energy decomposition analysis, natural population analysis, Wiberg bond indexes (WBI), molecular polarity index (MPI) and ionization potential (IP). It suggested that Ti-Si-O clusters with a low Ti : Si ratio is beneficial to adsorbing methane and inclination to the hydrogen atom transfer (HAT) process, while the clusters with a high Ti : Si ratio favors the generation of a terminal oxygen radical and results in high reactivity and turnover frequency. On the other hand, a cluster size of m+n=12 is recommended considering both the ionization potential and the turnover frequency of the reaction. Hopefully, these finding will be instructive for the design of high-performance Ti-Si-O catalyst toward methane conversion.

17.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258614

RESUMO

The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation. Various intrinsic and extrinsic factors may affect not only the variation of a trait, but also its covariation with body size, thus making it difficult to remove completely the effect of body size in comparative studies. These complications are illustrated by several examples of how body size interacts with diverse developmental, physiological, behavioral and ecological factors to affect variation in metabolic rate both within and across species. Such causal interactions are revealed by significant effects of these factors on the body-mass scaling slope of metabolic rate. I discuss five possible major kinds of methods for removing body-size effects that attempt to overcome these complications, at least in part, but I hope that my Review will encourage the development of other, hopefully better methods for doing so.


Assuntos
Biologia , Tamanho Corporal/fisiologia , Fenótipo
18.
Angew Chem Int Ed Engl ; 61(47): e202211771, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36283972

RESUMO

This work investigates the critical factors impacting electrochemical CO2 reduction reaction (CO2 RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2 RR is studied by precisely controlling NC size in the 1-2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface-to-volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2 RR performance of Au38 isomers (Au38 Q and Au38 T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2 RR activity and selectivity. Au38 Q shows higher activity and selectivity towards CO than Au38 T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38 Q than Au38 T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2 RR performance of identical size Au NCs. Overall, this work provides important structure-property relationships for tailoring the NCs for CO2 RR.

19.
Nanotechnology ; 33(10)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34633300

RESUMO

The atomic models of amorphous and monocrystalline composite AlFeNiCrCu high-entropy alloy nanowires were established via the molecular dynamics method. The effects of amorphous structure thickness on mechanical properties and deformation mechanism were investigated by applying tensile and compressive loads to the nanowires. As the thickness of amorphous structures increases, the tensile yield strength decreases, and the asymmetry between tension and compression decreases. The tensile deformation mechanism transforms from the coupling interactions between stacking faults in crystal structures and uniform deformation of amorphous structures to the individual actions of uniform deformation of amorphous structures. During the tensile process, the nanowires necking appears at amorphous structures, and the thinner amorphous structures, the more prone to necking. The compressive deformation mechanism is the synergistic effects of twins and SFs in crystal structures and uniform deformation of amorphous structures, which is irrelevant to amorphous structure thickness. Remarkably, amorphous structures transform into crystal structures in the amorphous and monocrystalline composite nanowires during the compressive process.

20.
Proc Natl Acad Sci U S A ; 115(1): 19-23, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29259107

RESUMO

Can the properties of the thermodynamic limit of a many-body quantum system be extrapolated by analyzing a sequence of finite-size cases? We present models for which such an approach gives completely misleading results: translationally invariant, local Hamiltonians on a square lattice with open boundary conditions and constant spectral gap, which have a classical product ground state for all system sizes smaller than a particular threshold size, but a ground state with topological degeneracy for all system sizes larger than this threshold. Starting from a minimal case with spins of dimension 6 and threshold lattice size [Formula: see text], we show that the latter grows faster than any computable function with increasing local spin dimension. The resulting effect may be viewed as a unique type of quantum phase transition that is driven by the size of the system rather than by an external field or coupling strength. We prove that the construction is thermally robust, showing that these effects are in principle accessible to experimental observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA