Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.107
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333022

RESUMO

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Assuntos
Evolução Molecular Direcionada , Aprendizado de Máquina , Serotonina/metabolismo , Algoritmos , Sequência de Aminoácidos , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Sítios de Ligação , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Fótons , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
2.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37708433

RESUMO

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores de Orexina , Humanos , Idoso , Idoso de 80 Anos ou mais , Orexinas/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico , Receptores de Orexina , Sono/fisiologia , Doença de Alzheimer/tratamento farmacológico
3.
J Med Genet ; 61(6): 586-589, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38350721

RESUMO

Pogo transposable element-derived protein with ZNF domain (POGZ) gene encodes a chromatin regulator and rare variants on this gene have been associated with a broad spectrum of neurodevelopmental disorders, such as White-Sutton syndrome. Patient clinical manifestations frequently include developmental delay, autism spectrum disorder and obesity. Sleep disturbances are also commonly observed in these patients, yet the biological pathways which link sleep traits to the POGZ-associated syndrome remain unclear. We screened for sleep implications among individuals with causative POGZ variants previously described. Sleep disturbances were observed in 52% of patients, and being obese was not observed as a risk factor for sleep problems. Next, we identified genes associated with sleep-associated traits among the POGZ regulatory targets, aiming to uncover the molecular pathways that, when disrupted by POGZ loss of function, contribute to the aetiology of sleep phenotypes in these patients. The intersect between POGZ targets and sleep-related genes was used in a pathway enrichment analysis. Relevant pathways among these overlapping genes are involved in the regulation of circadian rhythm, tau protein binding, ATPase activator activity. This study may represent the beginning for novel functional investigations on shared molecular mechanisms between sleep disturbances and rare developmental syndromes related to POGZ and its regulatory targets.


Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Transtornos do Sono-Vigília , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Sono-Vigília/genética , Masculino , Feminino , Sono/genética , Criança , Pré-Escolar , Ritmo Circadiano/genética , Proteínas de Ligação a DNA , Proteínas de Ciclo Celular
4.
J Neurosci ; 43(7): 1191-1210, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36631268

RESUMO

Synaptic changes play a major role in memory processes. Modulation of synaptic responses by brain states remains, however, poorly understood in hippocampal networks, even in basal conditions. We recorded evoked synaptic responses at five hippocampal pathways in freely moving male rats. We showed that, at the perforant path to dentate gyrus (PP-DG) synapse, responses increase during wakefulness compared with sleep. At the Schaffer collaterals to CA1 (SC-CA1) synapse, responses increase during non-REM sleep (NREM) compared with the other states. During REM sleep (REM), responses decreased at the PP-DG and SC-CA1 synapses compared with NREM, while they increased at the fornix to nucleus accumbens synapse (Fx-NAc) during REM compared with the other states. In contrast, responses at the fornix to medial PFC synapse (Fx-PFC) and at the fornix to amygdala synapse (Fx-Amy) were weakly modulated by vigilance states. Extended sleep periods led to synaptic changes at PP-DG and Fx-Amy synapses but not at the other synapses. Synaptic responses were also linked to local oscillations and were highly correlated between Fx-PFC and Fx-NAc but not between Fx-Amy and these synapses. These results reveal synapse-specific modulations that may contribute to memory consolidation during the sleep-wake cycle.SIGNIFICANCE STATEMENT Surprisingly, the cortical network dynamics remains poorly known at the synaptic level. We tested the hypothesis that brain states would modulate synaptic changes in the same way at different cortical connections. To tackle this issue, we implemented an approach to explore the synaptic behavior of five connections upstream and downstream the rat hippocampus. Our study reveals that synaptic responses are modulated in a highly synapse-specific manner by wakefulness and sleep states as well as by local oscillations at these connections. Moreover, we found rapid synaptic changes during wake and sleep transitions as well as synaptic down and upregulations after extended periods of sleep. These synaptic changes are likely related to the mechanisms of sleep-dependent memory consolidation.


Assuntos
Hipocampo , Sinapses , Ratos , Masculino , Animais , Hipocampo/fisiologia , Sinapses/fisiologia , Sono/fisiologia , Encéfalo , Via Perfurante/fisiologia
5.
Neuroimage ; 295: 120662, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823503

RESUMO

Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-ß or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Técnicas de Imagem por Elasticidade , Sono , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Envelhecimento/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Camundongos Transgênicos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Masculino , Camundongos Endogâmicos C57BL
6.
Neurobiol Dis ; 190: 106369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049012

RESUMO

Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.


Assuntos
Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Humanos , Sono/fisiologia , Peptídeos beta-Amiloides/metabolismo , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Biomarcadores
7.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308520

RESUMO

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Amiloidose , Epilepsia , Camundongos , Animais , Antagonistas de Dopamina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamento farmacológico , Modelos Animais de Doenças , Amiloidose/tratamento farmacológico
8.
BMC Neurosci ; 25(1): 34, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039434

RESUMO

The regulation of circadian rhythms and the sleep-wake states involves in multiple neural circuits. The suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian behaviors. The basal forebrain (BF) is a critical brain region of sleep-wake regulation, which is the downstream of the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN-HDB pathway remains poorly understood. Herein, activation of this pathway significantly increased non-rapid eye movement (NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken together, these findings reveal that the SCN-HDB pathway participates in NREM sleep regulation and provides direct evidence of a novel SCN-related pathway involved in sleep-wake states regulation.


Assuntos
Vias Eferentes , Optogenética , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/fisiologia , Masculino , Camundongos , Vias Eferentes/fisiologia , Camundongos Endogâmicos C57BL , Fases do Sono/fisiologia , Prosencéfalo Basal/fisiologia , Ritmo Circadiano/fisiologia , Eletroencefalografia
9.
J Theor Biol ; 593: 111892, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945471

RESUMO

Across early childhood development, sleep behavior transitions from a biphasic pattern (a daytime nap and nighttime sleep) to a monophasic pattern (only nighttime sleep). The transition to consolidated nighttime sleep, which occurs in most children between 2- and 5-years-old, is a major developmental milestone and reflects interactions between the developing homeostatic sleep drive and circadian system. Using a physiologically-based mathematical model of the sleep-wake regulatory network constrained by observational and experimental data from preschool-aged participants, we analyze how developmentally-mediated changes in the homeostatic sleep drive may contribute to the transition from napping to non-napping sleep patterns. We establish baseline behavior by identifying parameter sets that model typical 2-year-old napping behavior and 5-year-old non-napping behavior. Then we vary six model parameters associated with the dynamics of and sensitivity to the homeostatic sleep drive between the 2-year-old and 5-year-old parameter values to induce the transition from biphasic to monophasic sleep. We analyze the individual contributions of these parameters to sleep patterning by independently varying their age-dependent developmental trajectories. Parameters vary according to distinct evolution curves and produce bifurcation sequences representing various ages of transition onset, transition durations, and transitional sleep patterns. Finally, we consider the ability of napping and non-napping light schedules to reinforce napping or promote a transition to consolidated sleep, respectively. These modeling results provide insight into the role of the homeostatic sleep drive in promoting interindividual variability in developmentally-mediated transitions in sleep behavior and lay foundations for the identification of light- or behavior-based interventions that promote healthy sleep consolidation in early childhood.

10.
J Sleep Res ; : e14142, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246601

RESUMO

The current study determined the extent to which sleep-wake state discrepancy impairs the efficacy of cognitive behavioural therapy for insomnia in a real-world clinical sample. Sleep-wake state discrepancy occurs when there is an inconsistency between a person's subjective and objective sleep, and is a common phenomenon amongst patients with insomnia. Limited information is available on the effectiveness of cognitive behavioural therapy for insomnia in treating patients who experience significant sleep-wake state discrepancy in "real-world" samples. In the present study, all patients with insomnia received cognitive behavioural therapy for insomnia through an outpatient insomnia program (N = 386; mean age = 51.96 years, SD = 15.62; 65.97% [N = 254] female). Prior to treatment, participants completed a polysomnography sleep study and sleep diary, which was used to calculate sleep-wake state discrepancy. At pre-treatment, post-treatment and 3-month follow-up, participants completed the Insomnia Severity Index and other questionnaires, and 1 week of sleep diaries from which sleep-onset latency, wake after sleep onset and other sleep variables were calculated. There were no differences in self-reported sleep-onset latency, wake after sleep onset or Insomnia Severity Index scores at post-treatment or 3-month follow-up between quintiles of sleep-wake state discrepancy. These results indicate that sleep-wake state discrepancy at pre-treatment does not predict treatment response to cognitive behavioural therapy for insomnia. Future research could examine multi-night assessments of sleep-wake state discrepancy to determine whether variations in discrepancy may relate to pre-treatment insomnia severity and cognitive behavioural therapy for insomnia outcomes.

11.
Am J Geriatr Psychiatry ; 32(4): 478-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040569

RESUMO

OBJECTIVE: Perform a secondary analysis examining the efficacy of the Transdiagnostic Intervention for Sleep and Circadian Dysfunction (TranS-C) for depression symptom responses, and explore changes in potential target mechanisms. DESIGN: Secondary analysis of a randomized controlled trial with convenience age subsamples (younger (20-49 year; n = 52) versus and older (50-71 years; n = 35)). SETTING: Community mental health clinics. PARTICIPANTS: Eighty-seven adults with serious mental illness. INTERVENTION: TranS-C versus treatment as usual (TAU). MEASUREMENTS: Outcomes were depression symptoms (Quick Inventory of Depression Symptoms), insomnia symptoms (Insomnia Severity Index), and objective sleep-wake rhythm measures (interdaily stability and relative amplitude). RESULTS: Depression response rates (≥50% symptom reductions) were higher in the TranS-C (35.0%) than the TAU (8.8%) group 6-months postintervention (χ2 = 10.3, p = 0.001). There was a medium effect of TranS-C versus TAU on depression symptoms 6-months postintervention (Cohen's d = -0.40, 95% confidence interval (CI): -0.81, 0.01). In both age groups, there were large treatment effects on insomnia symptoms post-treatment (Cohen's d >0.90). In the older subsample, there were additionally medium treatment effects on post-treatment interdaily stability (Cohen's d = 0.60, 95% CI: -0.11, 1.61). Post-treatment reductions in insomnia symptoms correlated with depression symptom reduction 6-months later in the younger subsample (Spearman rho = 0.59, n = 20, p = 0.008). In older adults, postintervention increases in interdaily stability correlated with depression symptom reductions 6-months later (Spearman rho = -0.52, n = 15, p = 0.049). CONCLUSION: Confirmatory trials are needed, given the low age-specific sample sizes here, to determine if TranS -C's produces durable depression responses by increasing sleep-wake rhythm stability in older adults and improving insomnia symptoms in younger adults. BRIEF ARTICLE SUMMARY: The authors evaluated preliminary efficacy of a behavioral intervention that targets sleep/sleep-wake rhythms, the Transdiagnostic Intervention for Sleep and Circadian Dysfunction (TranS-C), for depression symptoms in people with serious mental illness. TranS-C was associated with higher depression response rates than treatment as usual 6-months postintervention. The degree of depression symptom response 6-months later was related to the degree of treatment phase improvements in interdaily stability (in older adults) and reduction in insomnia severity (in younger adults). A pragmatic nonpharmacologic intervention, the Transdiagnostic Intervention for Sleep and Circadian Dysfunction, has preliminary efficacy for improving sleep-wake factors and depression symptoms.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Idoso , Distúrbios do Início e da Manutenção do Sono/terapia , Depressão/terapia , Depressão/psicologia , Sono/fisiologia , Resultado do Tratamento
12.
Eur J Neurol ; 31(1): e16026, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531449

RESUMO

BACKGROUND AND PURPOSE: The diagnosis of sleep-wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well-characterized SWD patients the potential of a data-driven approach for the identification of SWDs. METHODS: We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. RESULTS: A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. CONCLUSIONS: This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Transtornos do Sono-Vigília , Humanos , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Sono , Polissonografia , Transtornos do Sono-Vigília/diagnóstico , Biomarcadores
13.
Int J Behav Nutr Phys Act ; 21(1): 40, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627708

RESUMO

BACKGROUND: Actigraphy is often used to measure sleep in pediatric populations, despite little confirmatory evidence of the accuracy of existing sleep/wake algorithms. The aim of this study was to determine the performance of 11 sleep algorithms in relation to overnight polysomnography in children and adolescents. METHODS: One hundred thirty-seven participants aged 8-16 years wore two Actigraph wGT3X-BT (wrist, waist) and three Axivity AX3 (wrist, back, thigh) accelerometers over 24-h. Gold standard measures of sleep were obtained using polysomnography (PSG; Embletta MPRPG, ST + Proxy and TX Proxy) in the home environment, overnight. Epoch by epoch comparisons of the Sadeh (two algorithms), Cole-Kripke (three algorithms), Tudor-Locke (four algorithms), Count-Scaled (CS), and HDCZA algorithms were undertaken. Mean differences from PSG values were calculated for various sleep outcomes. RESULTS: Overall, sensitivities were high (mean ± SD: 91.8%, ± 5.6%) and specificities moderate (63.8% ± 13.8%), with the HDCZA algorithm performing the best overall in terms of specificity (87.5% ± 1.3%) and accuracy (86.4% ± 0.9%). Sleep outcome measures were more accurately measured by devices worn at the wrist than the hip, thigh or lower back, with the exception of sleep efficiency where the reverse was true. The CS algorithm provided consistently accurate measures of sleep onset: the mean (95%CI) difference at the wrist with Axivity was 2 min (-6; -14,) and the offset was 10 min (5, -19). Several algorithms provided accurate measures of sleep quantity at the wrist, showing differences with PSG of just 1-18 min a night for sleep period time and 5-22 min for total sleep time. Accuracy was generally higher for sleep efficiency than for frequency of night wakings or wake after sleep onset. The CS algorithm was more accurate at assessing sleep period time, with narrower 95% limits of agreement compared to the HDCZA (CS:-165 to 172 min; HDCZA: -212 to 250 min). CONCLUSION: Although the performance of existing count-based sleep algorithms varies markedly, wrist-worn devices provide more accurate measures of most sleep measures compared to other sites. Overall, the HDZCA algorithm showed the greatest accuracy, although the most appropriate algorithm depends on the sleep measure of focus.


Assuntos
Actigrafia , Sono , Criança , Adolescente , Humanos , Reprodutibilidade dos Testes , Polissonografia , Algoritmos
14.
J Pineal Res ; 76(5): e12985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888087

RESUMO

Previous studies have reported inconsistent results about exogenous melatonin's sleep-promoting effects. A possible explanation relies on the heterogeneity in administration schedule and dose, which might be accountable for differences in treatment efficacy. In this paper, we undertook a systematic review and meta-analysis of double-blind, randomized controlled trials performed on patients with insomnia and healthy volunteers, evaluating the effect of melatonin administration on sleep-related parameters. The standardized mean difference between treatment and placebo groups in terms of sleep onset latency and total sleep time were used as outcomes. Dose-response and meta-regression models were estimated to explore how time of administration, dose, and other treatment-related parameters might affect exogenous melatonin's efficacy. We included 26 randomized controlled trials published between 1987 and 2020, for a total of 1689 observations. Dose-response meta-analysis showed that melatonin gradually reduces sleep onset latency and increases total sleep time, peaking at 4 mg/day. Meta-regression models showed that insomnia status (ß = 0.50, p < 0.001) and time between treatment administration and the sleep episode (ß = -0.16, p = 0.023) were significant predictors of sleep onset latency, while the time of day (ß = -0.086, p < 0.01) was the only significant predictor of total sleep time. Our results suggest that advancing the timing of administration (3 h before the desired bedtime) and increasing the administered dose (4 mg/day), as compared to the exogenous melatonin schedule most used in clinical practice (2 mg 30 min before the desired bedtime), might optimize the efficacy of exogenous melatonin in promoting sleep.


Assuntos
Melatonina , Ensaios Clínicos Controlados Aleatórios como Assunto , Distúrbios do Início e da Manutenção do Sono , Melatonina/administração & dosagem , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Relação Dose-Resposta a Droga , Sono/efeitos dos fármacos
15.
Brain ; 146(7): 2803-2813, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511881

RESUMO

Sleep duration, sleep deprivation and the sleep-wake cycle are thought to play an important role in the generation of epileptic activity and may also influence seizure risk. Hence, people diagnosed with epilepsy are commonly asked to maintain consistent sleep routines. However, emerging evidence paints a more nuanced picture of the relationship between seizures and sleep, with bidirectional effects between changes in sleep and seizure risk in addition to modulation by sleep stages and transitions between stages. We conducted a longitudinal study investigating sleep parameters and self-reported seizure occurrence in an ambulatory at-home setting using mobile and wearable monitoring. Sixty subjects wore a Fitbit smartwatch for at least 28 days while reporting their seizure activity in a mobile app. Multiple sleep features were investigated, including duration, oversleep and undersleep, and sleep onset and offset times. Sleep features in participants with epilepsy were compared to a large (n = 37 921) representative population of Fitbit users, each with 28 days of data. For participants with at least 10 seizure days (n = 34), sleep features were analysed for significant changes prior to seizure days. A total of 4956 reported seizures (mean = 83, standard deviation = 130) and 30 485 recorded sleep nights (mean = 508, standard deviation = 445) were included in the study. There was a trend for participants with epilepsy to sleep longer than the general population, although this difference was not significant. Just 5 of 34 participants showed a significant difference in sleep duration the night before seizure days compared to seizure-free days. However, 14 of 34 subjects showed significant differences between their sleep onset (bed) and/or offset (wake) times before seizure occurrence. In contrast to previous studies, the current study found undersleeping was associated with a marginal 2% decrease in seizure risk in the following 48 h (P < 0.01). Nocturnal seizures were associated with both significantly longer sleep durations and increased risk of a seizure occurring in the following 48 h. Overall, the presented results demonstrated that day-to-day changes in sleep duration had a minimal effect on reported seizures, while patient-specific changes in bed and wake times were more important for identifying seizure risk the following day. Nocturnal seizures were the only factor that significantly increased the risk of seizures in the following 48 h on a group level. Wearables can be used to identify these sleep-seizure relationships and guide clinical recommendations or improve seizure forecasting algorithms.


Assuntos
Epilepsia , Duração do Sono , Humanos , Estudos Longitudinais , Eletroencefalografia , Sono , Epilepsia/complicações , Epilepsia/epidemiologia , Convulsões/complicações
16.
Acta Pharmacol Sin ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671193

RESUMO

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

17.
BMC Public Health ; 24(1): 1913, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014342

RESUMO

BACKGROUND: Sleep problems are common among infants and can have a serious impact on the health and wellbeing of both child and parents. To sustainably promote infant sleep on a population level, it is necessary to develop evidence-based programs that can be implemented on a large scale. The Youth Health Care setting, with its focus on prevention, child health promotion and services widely available for parents, can be a suitable setting to do so. Currently however, sleep health promotion in this setting seems to be suboptimal. To promote healthy infant sleep on a population level, programs need to be accessible and comprehensible for all parents, including parents with limited (health) literacy. Therefore, this study aims to develop, implement and evaluate a program called 'Sleep on number 1', that is tailored to Dutch Youth Health Care, to sustainably promote healthy sleep in 0-2-year-old infants. METHODS: The program was developed based on co-creation with parents and Youth Health Care professionals, evidence-based behaviour change theories and sleep health promotion methods. Program effectiveness is investigated with a quasi-experimental study design comparing the program group with the care as usual control group. Participants consist of parents of 0-2-year-old children. Primary outcome is infant sleep quality at the age of 10 weeks and 6, 9, 14 and 24 months, measured with a sleep diary. The primary data analysis focuses on night awakenings at 9 months. Secondary outcomes focus on parental behaviour regarding infant sleep, related behavioural determinants and parental satisfaction with Youth Health Care sleep advice. Program effectiveness is analysed using a linear mixed-model in case of data clustering, and an independent samples T-test or linear regression in case no substantial clustering effects are found. A mixed methods process evaluation is performed with parents and Youth Health Care professionals, assessing program reach, adoption, implementation, maintenance and working mechanisms. DISCUSSION: The 'Sleep on number 1' program is an evidence-based sleep health program for 0-2-year-old children, tailored to Dutch Youth Health Care. If effective, this program has the potential to improve infant sleep on a population level. TRIAL REGISTRATION: ISRCTN, ISRCTN27246394, registered on 10/03/2023. https://www.isrctn.com/ISRCTN27246394 .


Assuntos
Promoção da Saúde , Avaliação de Programas e Projetos de Saúde , Humanos , Países Baixos , Lactente , Promoção da Saúde/métodos , Recém-Nascido , Pais/psicologia , Pais/educação , Pré-Escolar , Masculino , Sono/fisiologia , Feminino , Desenvolvimento de Programas
18.
BMC Pediatr ; 24(1): 373, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811876

RESUMO

BACKGROUND: Sleep has been known to affect childhood development. Sleep disturbance is likely more common in children with developmental delay (DD) than in typical development. There are few studies on the correlation between sleep disturbance and developmental features in children with DD. Therefore, this study aimed to evaluate the associations between the two in children with DD. METHODS: A total of 45 children (age range 27.0 ± 11.1) with DD were recruited and evaluated using the Sleep Disturbance Scale for Children (SDSC) and Bayley Scales of Infant and Toddler Development (BSID-III). The outcomes are expressed as means and standard deviations. The correlation between SDSC and BSID-III was assessed using Spearman's rank correlation test. Multiple regression analysis was performed to investigate the relationship between BSID-III domains and SDSC questionnaire subscales. Statistical significance was set at p < 0.05. RESULTS: Based on the correlation analysis and subsequent hierarchical regression analysis, cognition and socio-emotional domains of BSID-III were significantly associated with the DOES subscale of the SDSC questionnaire. In addition, the expressive language domain of the BSID-III was found to be associated with the DA subscale of the SDSC questionnaire. It seems that excessive daytime sleepiness might negatively affect emotional and behavioral problems and cognitive function. Also, arousal disorders seem to be related to memory consolidation process, which is thought to affect language expression. CONCLUSION: This study demonstrated that DA and DOES subscales of the SDSC questionnaire were correlated with developmental aspects in preschool-aged children with DD. Sleep problems in children with DD can negatively affect their development, thereby interfering with the effectiveness of rehabilitation. Identifying and properly managing the modifiable factors of sleep problems is also crucial as a part of comprehensive rehabilitation treatment. Therefore, we should pay more attention to sleep problems, even in preschool-aged children with DD.


Assuntos
Desenvolvimento Infantil , Deficiências do Desenvolvimento , Transtornos do Sono-Vigília , Humanos , Pré-Escolar , Masculino , Feminino , Deficiências do Desenvolvimento/etiologia , Transtornos do Sono-Vigília/etiologia , Cognição , Lactente
19.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155139

RESUMO

Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10cre/creBmal1fl/- ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4-/- ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society.


Assuntos
Luz , Modelos Biológicos , Opsinas de Bastonetes/metabolismo , Transtornos do Sono-Vigília/diagnóstico , Animais , Relógios Circadianos/fisiologia , Síndrome do Jet Lag/fisiopatologia , Transdução de Sinal Luminoso , Masculino , Camundongos Endogâmicos C57BL , Sono , Transtornos do Sono-Vigília/fisiopatologia , Núcleo Supraquiasmático/fisiopatologia , Vigília
20.
Clin Oral Investig ; 28(7): 384, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888691

RESUMO

OBJECTIVES: The study was to explore the causal effects of sleep characteristics on temporomandibular disorder (TMD)-related pain using Mendelian randomization (MR) analysis. MATERIALS AND METHODS: Five sleep characteristics (short sleep, insomnia, chronotype, snoring, sleep apnea) were designated as exposure factors. Data were obtained from previous publicized genome-wide association studies and single nucleotide polymorphisms (SNPs) strongly associated with them were utilized as instrumental variables (IVs). TMD-related pain was designed as outcome variable and sourced from the FinnGens database. MR analysis was employed to explore the causal effects of the five sleep characteristics on TMD-related pain. The causal effect was analyzed using the inverse variance-weighted (IVW), weighted median, and MR-Egger methods. Subsequently, sensitivity analyses were conducted using Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. RESULTS: A causal effect of short sleep on TMD-related pain was revealed by IVW (OR: 1.60, 95% CI: 1.06-2.41, P = 0.026). No causal relationship was identified between other sleep characteristics (insomnia, chronotype, snoring, sleep apnea) and TMD-related pain. CONCLUSIONS: Our study suggests that short sleep may increase the risk of TMD-related pain, while there was no causal relationship between other sleep characteristics and TMD-related pain. Further studies are warranted to deepen and definitively clarify their relationship. CLINICAL RELEVANCE: These findings reveal that the short sleep may be a risk factor of TMD-related pain and highlight the potential therapeutical effect of extending sleep time on alleviating TMD-related pain.


Assuntos
Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Transtornos da Articulação Temporomandibular , Humanos , Transtornos da Articulação Temporomandibular/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Ronco , Transtornos do Sono-Vigília/genética , Síndromes da Apneia do Sono/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA