Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739089

RESUMO

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Gencitabina , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847786

RESUMO

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Assuntos
Nefropatias Diabéticas , Células-Tronco Mesenquimais , Proteína Smad2 , Proteína Smad3 , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Animais , Células-Tronco Mesenquimais/metabolismo , Proteína Smad2/metabolismo , Camundongos , Humanos , Proteína Smad3/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Adenosina/metabolismo , Adenosina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Transdução de Sinais , Metiltransferases/metabolismo , Metiltransferases/genética , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular
3.
J Cell Physiol ; 239(1): 112-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149778

RESUMO

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Assuntos
Lisofosfolipídeos , Osteogênese , Receptores de Lisofosfolipídeos , Perda de Dente , Animais , Camundongos , Diferenciação Celular/fisiologia , Lisofosfolipídeos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Lisofosfolipídeos/metabolismo
4.
J Cell Physiol ; 239(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991438

RESUMO

Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17ß-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-ß1 (TGF-ß1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-ß1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-ß1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.


Assuntos
Endometrite , Estradiol , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Feminino , Camundongos , Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Estradiol/farmacologia , Estrogênios/metabolismo , Fibrose , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
5.
Mol Med ; 30(1): 32, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424494

RESUMO

BACKGROUND: Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. METHODS: The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE-/- mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. RESULTS: USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. CONCLUSION: Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.


Assuntos
Aterosclerose , Transição Endotélio-Mesênquima , Humanos , Camundongos , Animais , Transdução de Sinais , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Regulação para Cima , Fatores Estimuladores Upstream/metabolismo , Fatores Estimuladores Upstream/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
Cancer Cell Int ; 24(1): 176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769521

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-ß signaling pathway may be associated with tumor progression. However, the relationship between TGF-ß signaling pathway and HCC remains to be further elucidated. The objective of our research was to investigate the impact of TGF-ß signaling pathway on HCC progression as well as the potential regulatory mechanism involved. METHODS: We conducted a series of bioinformatics analyses to screen and filter the most relevant hub genes associated with HCC. E. coli was utilized to express recombinant protein, and the Ni-NTA column was employed for purification of the target protein. Liquid liquid phase separation (LLPS) of protein in vitro, and fluorescent recovery after photobleaching (FRAP) were utilized to verify whether the target proteins had the ability to drive force LLPS. Western blot and quantitative real-time polymerase chain reaction (qPCR) were utilized to assess gene expression levels. Transcription factor binding sites of DNA were identified by chromatin immunoprecipitation (CHIP) qPCR. Flow cytometry was employed to examine cell apoptosis. Knockdown of target genes was achieved through shRNA. Cell Counting Kit-8 (CCK-8), colony formation assays, and nude mice tumor transplantation were utilized to test cell proliferation ability in vitro and in vivo. RESULTS: We found that Smad2/3/4 complex could regulate tyrosine aminotransferase (TAT) expression, and this regulation could relate to LLPS. CHIP qPCR results showed that the key targeted DNA binding site of Smad2/3/4 complex in TAT promoter region is -1032 to -1182. In addition. CCK-8, colony formation, and nude mice tumor transplantation assays showed that Smad2/3/4 complex could repress cell proliferation through TAT. Flow cytometry assay results showed that Smad2/3/4 complex could increase the apoptosis of hepatoma cells. Western blot results showed that Smad2/3/4 complex would active caspase-9 through TAT, which uncovered the mechanism of Smad2/3/4 complex inducing hepatoma cell apoptosis. CONCLUSION: This study proved that Smad2/3/4 complex could undergo LLPS to active TAT transcription, then active caspase-9 to induce hepatoma cell apoptosis in inhibiting HCC progress. The research further elucidate the relationship between TGF-ß signaling pathway and HCC, which contributes to discover the mechanism of HCC development.

7.
BMC Cancer ; 24(1): 122, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267923

RESUMO

BACKGROUND: Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer. METHODS: The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility. RESULTS: We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer. CONCLUSIONS: In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Regulação para Cima , Fator de Crescimento Transformador beta1/genética , Processos Neoplásicos , Transdução de Sinais , Proliferação de Células/genética , RNA Mensageiro , Proteína Smad2/genética , Proteínas Ligases SKP Culina F-Box
8.
Cell Biol Int ; 48(2): 216-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081783

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Integrina beta3/genética , Trombomodulina/genética , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Exp Cell Res ; 431(1): 113739, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567436

RESUMO

Oral cancer is a common malignant tumor of the oral cavity that affects many countries with a prevalent distribution in the Indian subcontinent, with poor prognosis rate on account of locoregional metastases. Gain-of-function mutations in p53 and overexpression of its related transcription factor, p63 are both widely reported events in oral cancers. However, targeting these alterations remains a far-achieved aim due to lack of knowledge on their downstream signaling pathways. In the present study, we characterize the isoforms of p63 and using knockdown strategy, decipher the functions and oncogenic signaling of p63 in oral cancers. Using Microarray and Chromatin Immunoprecipitation experiments, we decipher a novel transcriptional regulatory axis between p63 and Activin A and establish its functional significance in migration of oral cancer cells. Using an orally bioavailable inhibitor of the Activin A pathway to attenuate oral cancer cell migration and invasion, we further demonstrate the targetability of this signaling axis. Our study highlights the oncogenic role of ΔNp63 - Activin A - SMAD2/3 signaling and provides a basis for targeting this oncogenic pathway in oral cancers.


Assuntos
Ativinas , Neoplasias Bucais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Movimento Celular , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ativinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Acta Pharmacol Sin ; 45(7): 1520-1529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519646

RESUMO

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-ß production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-ß inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1ß and p53, which accounts for the suppression of TGF-ß production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-ß/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.


Assuntos
Movimento Celular , Neoplasias Hepáticas , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Ativação Transcricional , Animais , Transição Epitelial-Mesenquimal , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Camundongos Nus , Camundongos
11.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446308

RESUMO

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Cinesinas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno
12.
Int Endod J ; 57(3): 344-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204205

RESUMO

AIM: Cyst formation of the jaws is frequently accompanied by the proliferation of odontogenic epithelial cells located in the periodontal ligament (PDL), which consists of heterozygous cells and includes the most fibroblasts. The lining epithelium of radicular cyst, an odontogenic cyst of inflammatory origin, is derived from the proliferation of the remnants of the Hertwig epithelial root sheath (odontogenic epithelial cell rests of Malassez; ERMs) in the PDL. ERMs are maintained at a lower proliferative state under physiological conditions, but the regulatory mechanisms underlying the inflammation-dependent enhanced-proliferative capabilities of ERMs are not fully understood. The aim of this study was to evaluate the effects of cytokine pathway association between TGF-ß signalling and IL-1ß signalling on the regulation of odontogenic epithelial cell proliferation using radicular cyst pathological specimens and odontogenic epithelial cell lines. METHODOLOGY: Immunofluorescence analyses were performed to clarify the expression levels of Smad2/3 and Ki-67 in ERMs of 8-week-old mouse molar specimens. In radicular cyst (n = 52) and dentigerous cysts (n = 6) specimens from human patients, the expression of p65 (a main subunit of NF-κB), Smad2/3 and Ki-67 were investigated using immunohistochemical analyses. Odontogenic epithelial cells and PDL fibroblastic cells were co-cultured with or without an inhibitor or siRNAs. Odontogenic epithelial cells were cultured with or without TGF-ß1 and IL-1ß. The proliferative capabilities and Smad2 phosphorylation levels of odontogenic epithelial cells were examined. RESULTS: Immunohistochemically, Smad2/3-positivity was increased, and p65-positivity and Ki-67-positivity were decreased both in ERMs and in the epithelial cells in dentigerous cysts, a non-inflammatory developmental cyst. In contrast, p65-positive cells, along with the expression of Ki-67, were increased and Smad2/3-positive cells were decreased in the lining epithelia of radicular cysts. Co-culture experiments with odontogenic epithelial cells and PDL fibroblastic cells revealed that PDL cells-derived TGF-ß1/2 and their downstream signalling suppressed odontogenic epithelial cell proliferation. Moreover, TGF-ß1 stimulation induced Smad2 phosphorylation and suppressed odontogenic epithelial cell proliferation, while IL-1ß stimulation reversed these phenotypes through p65 transactivation. CONCLUSIONS: These results suggest that IL-1ß-p65 signalling promotes odontogenic epithelial cell proliferation through suppressing TGF-ß-Smad2 signalling, which would be involved in the pathogenesis of radicular cysts.


Assuntos
Cisto Dentígero , Cistos Odontogênicos , Cisto Radicular , Humanos , Animais , Camundongos , Cisto Radicular/patologia , Fator de Crescimento Transformador beta1 , Cisto Dentígero/complicações , Cisto Dentígero/metabolismo , Cisto Dentígero/patologia , Antígeno Ki-67 , Descanso , Cistos Odontogênicos/patologia , Células Epiteliais , Epitélio/patologia , Proliferação de Células , Fator de Crescimento Transformador beta/metabolismo , Interleucina-1beta
13.
J Asian Nat Prod Res ; 26(8): 945-954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38634704

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis of breast cancer. Thiostrepton exerts anti-tumor activities against several cancers including TNBC. Herein we discussed the new molecular mechanisms of thiostrepton in TNBC. Thiostrepton inhibited MDA-MB-231 cell viability, accompanied by a decrease of c-FLIP and p-SMAD2/3. c-FLIP overexpression reduced the sensitivity of MDA-MB-231 cells to thiostrepton, while SMAD2/3 knockdown increased the sensitivity of MDA-MB-231 cells to thiostrepton. Moreover, c-FLIP overexpression significantly increased the expression and phosphorylation of SMAD2/3 proteins and vice versa. In conclusion, our study reveals c-FLIP/SMAD2/3 signaling pathway as a novel mechanism of antitumor activity of thiostrepton.


Assuntos
Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Proteína Smad2/metabolismo , Feminino , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Estrutura Molecular , Regulação para Baixo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
14.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473980

RESUMO

Liver fibrosis poses a significant global health risk due to its association with hepatocellular carcinoma (HCC) and the lack of effective treatments. Thus, the need to discover additional novel therapeutic targets to attenuate liver diseases is urgent. Leucine-rich repeat containing 1 (LRRC1) reportedly promotes HCC development. Previously, we found that LRRC1 was significantly upregulated in rat fibrotic liver according to the transcriptome sequencing data. Herein, in the current work, we aimed to explore the role of LRRC1 in liver fibrosis and the underlying mechanisms involved. LRRC1 expression was positively correlated with liver fibrosis severity and significantly elevated in both human and murine fibrotic liver tissues. LRRC1 knockdown or overexpression inhibited or enhanced the proliferation, migration, and expression of fibrogenic genes in the human hepatic stellate cell line LX-2. More importantly, LRRC1 inhibition in vivo significantly alleviated CCl4-induced liver fibrosis by reducing collagen accumulation and hepatic stellate cells' (HSCs) activation in mice. Mechanistically, LRRC1 promoted HSC activation and liver fibrogenesis by preventing the ubiquitin-mediated degradation of phosphorylated mothers against decapentaplegic homolog (Smad) 2/3 (p-Smad2/3), thereby activating the TGF-ß1/Smad pathway. Collectively, these results clarify a novel role for LRRC1 as a regulator of liver fibrosis and indicate that LRRC1 is a promising target for antifibrotic therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Leucina/metabolismo , Regulação para Cima , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
15.
Int Ophthalmol ; 44(1): 229, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795168

RESUMO

BACKGROUND: The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-ß2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS: Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-ß2 (5 ng/mL). PAE (300 µM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-ß2 for 22 h. SB-431542, a TGF-ß receptor inhibitor (10 µM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-ß2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS: PAE attenuated TGF-ß2-induced oxidative stress and suppressed TGF-ß2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-ß2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-ß2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSION: PAE alleviates TGF-ß2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.


Assuntos
Matriz Extracelular , Glucosídeos , Monoterpenos , Estresse Oxidativo , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Western Blotting
16.
Mol Med ; 29(1): 146, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884902

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS: We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS: First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION: This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fatores de Transcrição , Animais , Camundongos , Caderinas/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Rim/metabolismo , Túbulos Renais/patologia , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
17.
Mol Med ; 29(1): 155, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940881

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third frequently diagnosed cancer with high incidence and mortality rate worldwide. Our previous report has demonstrated that circCOL1A1 (hsa_circ_0044556) functions as an oncogene in CRC, and Gene Ontology (GO) analysis has also revealed the strong association between circCOL1A1 and angiogenesis. However, the mechanism of circCOL1A1 or exosomal circCOL1A1 in CRC angiogenesis remains elusive. METHODS: Purified exosomes from CRC cells were characterized by nanoparticle tracking analyzing, electron microscopy and western blot. qRT-PCR, immunohistochemistry or western blot were employed to test the expression of circCOL1A1, EIF4A3, Smad pathway and angiogenic markers. Cell proliferation of HUVECs was monitored by CCK-8 assay. The migratory and angiogenic capabilities of HUVECs were detected by wound healing and tube formation assay, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down and FISH assays were used to detect the interactions among circCOL1A1, EIF4A3 and Smad2/3 mRNA. The in vitro findings were verified in xenograft model. RESULTS: CRC cell-derived exosomal circCOL1A1 promoted angiogenesis of HUVECs via recruiting EIF4A3. EIF4A3 was elevated in CRC tissues, and it stimulated angiogenesis of HUVECs through directly binding and stabilizing Smad2/3 mRNA. Moreover, exosomal circCOL1A1 promoted angiogenesis via inducing Smad2/3 signaling pathway in vitro, and it also accelerated tumor growth and angiogenesis in vivo. CONCLUSION: CRC cell-derived exosomal circCOL1A1 promoted angiogenesis via recruiting EIF4A3 and activating Smad2/3 signaling.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , MicroRNAs/genética , Transdução de Sinais , Neoplasias Colorretais/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Exossomos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/metabolismo
18.
Mol Carcinog ; 62(2): 261-276, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345938

RESUMO

To identify Musashi2 as an effective biomarker regulated by the TGF-ß/Smad2/3 signaling pathway for the precise diagnosis and treatment of colorectal cancer (CRC) through bioinformatic tools and experimental verification. The Cancer Genome Atlas, Timer, and Kaplan-Meier analyses were performed to clarify the expression of Musashi2 and its influence on the prognosis of CRC. Transforming growth factor beta 1 (TGF-ß1) was used to activate the TGF-ß/Smad2/3 signaling pathway to identify whether it could regulate the expression and function of Musashi2. Western blot analysis and quantitative PCR analyses were conducted to verify the expression of Musashi2. Cell counting kit-8 (CCK8), EdU, wound healing, and Transwell assays were conducted to reveal the role of Musashi2 in the proliferation, migration, and invasion of CRC. Musashi2 was upregulated in CRC and promoted proliferation and metastasis. TGF-ß1 increased the expression of Musashi2, while the antagonist inducer of type II TGF-ß receptor degradation-1 (ITD-1) decreased the expression. CCK8 and EdU assays demonstrated that inhibition of Musashi2 or use of ITD-1 lowered proliferation ability. The Transwell and wound healing assays showed that the migration and invasion abilities of CRC cells could be regulated by Musashi2. The above functions could be enhanced by TGF-ß1 by activating the TGF-ß/Smad2/3 signaling pathway and reversed by ITD-1. A positive correlation was found between Musashi2 and the TGF-ß/Smad2/3 signaling pathway. TGF-ß1 activates the TGF-ß/Smad2/3 pathway to stimulate the expression of Musashi2, which promotes the progression of CRC. Musashi2 might become a target gene for the development of new antitumor drugs.


Assuntos
Neoplasias Colorretais , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad2/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
J Med Virol ; 95(8): e29009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563850

RESUMO

Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-ß-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2/genética , Células Endoteliais , Análise da Expressão Gênica de Célula Única , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/patologia
20.
Mol Reprod Dev ; 90(6): 339-357, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379342

RESUMO

In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-ß signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-ß signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-ß, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.


Assuntos
Galinhas , Fator de Crescimento Transformador beta , Animais , Galinhas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição/metabolismo , Células Germinativas , Proliferação de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA