Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 638: 200-209, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462494

RESUMO

Advances in pharmacy and medicine have led to the development of many anti-cancer and molecular targeted agents; however, there are few agents capable of suppressing metastasis. To prevent cancer recurrence, it is essential to develop novel agents for inhibiting metastasis. Coumarin-based compounds have multiple pharmacological activities including anti-cancer effects. We screened a compound library constructed at Kyoto Pharmaceutical University and showed that 7,8-dihydroxy-3-(4'-hydroxyphenyl)coumarin (DHC) inhibited invasion and migration of LM8 mouse osteosarcoma cells and 143B human osteosarcoma cells in a concentration-dependent manner. DHC decreased intracellular actin filament formation by downregulating Rho small GTP-binding proteins such as RHOA, RAC1, and CDC42, which regulate actin reorganization. However, DHC did not downregulate the corresponding mRNA transcripts, whereas it downregulated Rho small GTP-binding proteins in the presence of cycloheximide, suggesting that DHC enhances the degradation of these proteins. DHC treatment inhibited metastasis and prolonged overall survival in a spontaneous metastasis mouse model. These results indicate that DHC has the potential to suppress metastasis of osteosarcoma cells by downregulating Rho small GTP-binding proteins.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Humanos , Movimento Celular , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Nitric Oxide ; 76: 71-80, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29550521

RESUMO

Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins.


Assuntos
Plaquetas/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Humanos , Ativação Plaquetária
3.
Proc Natl Acad Sci U S A ; 111(26): 9473-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979773

RESUMO

Members of the Arf family of small G proteins are involved in membrane traffic and organelle structure. They control the recruitment of coat proteins, and modulate the structure of actin filaments and the lipid composition of membranes. The ADP-ribosylation factor 6 (Arf6) isoform and the exchange factor for Arf6 (EFA6) are known to regulate the endocytic pathway of many different receptors. To determine the molecular mechanism of the EFA6/Arf6 function in vesicular transport, we searched for new EFA6 partners. In a two-hybrid screening using the catalytic Sec7 domain as a bait, we identified endophilin as a new partner of EFA6. Endophilin contains a Bin/Amphiphysin/Rvs (BAR) domain responsible for membrane bending, and an SH3 domain responsible for the recruitment of dynamin and synaptojanin, two proteins involved, respectively, in the fission and uncoating of clathrin-coated vesicles. By using purified proteins, we confirmed the direct interaction, and identified the N-BAR domain as the binding motif to EFA6A. We showed that endophilin stimulates the catalytic activity of EFA6A on Arf6. In addition, we observed that the Sec7 domain competes with flat but not with highly curved lipid membranes to bind the N-BAR. In cells, expression of EFA6A recruits endophilin to EFA6A-positive plasma membrane ruffles, whereas expression of endophilin rescues the EFA6A-mediated inhibition of transferrin internalization. Overall, our results support a model whereby EFA6 recruits endophilin on flat areas of the plasma membrane to control Arf6 activation and clathrin-mediated endocytosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Recombinantes/metabolismo , Fator 6 de Ribosilação do ADP , Clatrina/metabolismo , Clonagem Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Xantenos
4.
Biochem Biophys Res Commun ; 471(1): 63-7, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26845352

RESUMO

Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Osteossarcoma/patologia , Osteossarcoma/fisiopatologia , Umbeliferonas/administração & dosagem , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Camundongos , Invasividade Neoplásica , Osteossarcoma/tratamento farmacológico
5.
Cell Metab ; 29(4): 901-916.e8, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30581121

RESUMO

Recent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modulating brown adipocyte functionality and systemic metabolism.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Prenilação de Proteína/efeitos dos fármacos , Proteína Desacopladora 1/antagonistas & inibidores , Adipócitos Marrons/metabolismo , Adolescente , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Proteína Desacopladora 1/metabolismo , Adulto Jovem
6.
Cancers (Basel) ; 8(9)2016 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-27589803

RESUMO

The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.

7.
Small GTPases ; 7(4): 270-282, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27589148

RESUMO

Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Actinas/metabolismo , Neoplasias/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Transporte Proteico
8.
Best Pract Res Clin Endocrinol Metab ; 27(3): 303-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23856261

RESUMO

The calcium-sensing receptor (CaSR) must function in the chronic presence of agonist, and recent studies suggest that its ability to signal under such conditions depends upon the unique mechanism(s) regulating its cellular trafficking. This chapter will highlight the evidence supporting an intracellular endoplasmic reticulum-localized pool of CaSR that can be mobilized to the plasma membrane by CaSR signaling, leading to agonist-driven insertional signaling (ADIS). I summarize evidence for the role of small GTP binding proteins (Rabs, Sar1 and ARFs), cargo receptors or chaperones (p24A, RAMPs) and interacting proteins (14-3-3 proteins, calmodulin) in anterograde trafficking of CaSR, and discuss the potential signaling specializations arising from CaSR interactions with caveolins or Filamin A/Rho. Finally, I summarize current knowledge about CaSR endocytosis and degradation by both the proteasome and lysosome, and highlight recent studies indicating that defective trafficking of CaSR or interacting protein mutants contributes to pathology in disorders of calcium homeostasis.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Membrana Celular/genética , Endocitose/fisiologia , Humanos , Transporte Proteico , Receptores de Detecção de Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA