Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Oncology ; 102(2): 168-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37699361

RESUMO

INTRODUCTION: SMG5 is involved in tumor cell development and viewed as a potential target for immunotherapy. The purpose of this study was to systematically analyze the expression level, function, and prognostic value of SMG5 in pan-cancers. METHODS: Differential expression of SMG5 in normal and tumor tissues was analyzed using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Database (GTEx) data. Survival analysis was performed by Kaplan-Meier method and Cox risk regression. The relationship between SMG5 expression and lymphocyte abundance, tumor cell immune infiltration level, molecular and immune subtypes as well as immune checkpoints was analyzed by tumor-immune system interactions database (TISIDB), Tumor Immune Estimation Resource (TIMER), and Sangerbox databases. The correlation between SMG5 and immune scores was studied using the Estimation of Stromal and Immune Cells in Malignant Tumours using Expression (ESTIMATE) data algorithm. Further, drug sensitivity analysis of SMG5 with low-grade glioma (LGG) was conducted using the CellMiner database. RESULTS: SMG5 was highly expressed in 23 tumors and only had a significant impact on the prognosis of patients with LGG only. In addition, in tumor microenvironment and tumor immune analysis, we found that the level of immune infiltration, tumor mutational load, microsatellite instability, and immune checkpoints of LGG were significantly correlated with SMG5 expression. Furthermore, SMG5 was significantly associated with immune scores, stromal scores, and sensitivity of some drugs in LGG. CONCLUSION: SMG5 is differentially expressed in several cancers and is significantly associated with prognosis, immune microenvironment, and immune checkpoints in LGG patients. Therefore, SMG5 could be a potential pan-cancer biomarker and an immunotherapeutic target for LGG.


Assuntos
Glioma , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Algoritmos , Diferenciação Celular , Microambiente Tumoral , Proteínas de Transporte
2.
Semin Cell Dev Biol ; 75: 78-87, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28866327

RESUMO

Nonsense-mediated mRNA decay (NMD) has traditionally been described as a quality control system that rids cells of aberrant mRNAs with crippled protein coding potential. However, transcriptome-wide profiling of NMD deficient cells identified a plethora of seemingly intact mRNAs coding for functional proteins as NMD targets. This led to the view that NMD constitutes an additional post-transcriptional layer of gene expression control involved in the regulation of many different biological pathways. Here, we review our current knowledge about the role of NMD in embryonic development and tissue-specific cell differentiation. We further summarize how NMD contributes to balancing of the integrated stress response and to cellular homeostasis of splicing regulators and NMD factors through auto-regulatory feedback loops. In addition, we discuss recent evidence that suggests a role for NMD as an innate immune response against several viruses. Altogether, NMD appears to play an important role in a broad spectrum of biological pathways, many of which still remain to be discovered.


Assuntos
Regulação da Expressão Gênica , Homeostase/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Humanos , Imunidade Inata/genética , Controle de Qualidade , RNA Mensageiro/metabolismo
3.
RNA ; 24(4): 557-573, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29348139

RESUMO

The term "nonsense-mediated mRNA decay" (NMD) originally described the degradation of mRNAs with premature translation-termination codons (PTCs), but its meaning has recently been extended to be a translation-dependent post-transcriptional regulator of gene expression affecting 3%-10% of all mRNAs. The degradation of NMD target mRNAs involves both exonucleolytic and endonucleolytic pathways in mammalian cells. While the latter is mediated by the endonuclease SMG6, the former pathway has been reported to require a complex of SMG5-SMG7 or SMG5-PNRC2 binding to UPF1. However, the existence, dominance, and mechanistic details of these exonucleolytic pathways are divisive. Therefore, we have investigated the possible exonucleolytic modes of mRNA decay in NMD by examining the roles of UPF1, SMG5, SMG7, and PNRC2 using a combination of functional assays and interaction mapping. Confirming previous work, we detected an interaction between SMG5 and SMG7 and also a functional need for this complex in NMD. In contrast, we found no evidence for the existence of a physical or functional interaction between SMG5 and PNRC2. Instead, we show that UPF1 interacts with PNRC2 and that it triggers 5'-3' exonucleolytic decay of reporter transcripts in tethering assays. PNRC2 interacts mainly with decapping factors and its knockdown does not affect the RNA levels of NMD reporters. We conclude that PNRC2 is probably an important mRNA decapping factor but that it does not appear to be required for NMD.


Assuntos
Proteínas de Transporte/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Helicases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Códon sem Sentido/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Ligação Proteica/genética , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido
4.
BMC Mol Biol ; 17(1): 17, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473591

RESUMO

BACKGROUND: Nonsense-mediated mRNA decay (NMD) is a RNA quality surveillance system for eukaryotes. It prevents cells from generating deleterious truncated proteins by degrading abnormal mRNAs that harbor premature termination codon (PTC). However, little is known about the molecular regulation mechanism underlying the inhibition of NMD by microRNAs. RESULTS: The present study demonstrated that miR-433 was involved in NMD pathway via negatively regulating SMG5. We provided evidence that (1) overexpression of miR-433 significantly suppressed the expression of SMG5 (P < 0.05); (2) Both mRNA and protein expression levels of TBL2 and GADD45B, substrates of NMD, were increased when SMG5 was suppressed by siRNA; (3) Expression of SMG5, TBL2 and GADD45B were significantly increased by miR-433 inhibitor (P < 0.05). These results together illustrated that miR-433 regulated NMD by targeting SMG5 mRNA. CONCLUSIONS: Our study highlights that miR-433 represses nonsense mediated mRNA decay. The miR-433 targets 3'-UTR of SMG5 and represses the expression of SMG5, whereas NMD activity is decreased when SMG5 is decreased. This discovery provides evidence for microRNA/NMD regulatory mechanism.


Assuntos
Proteínas de Transporte/genética , MicroRNAs/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Antígenos de Diferenciação/genética , Linhagem Celular , Regulação para Baixo , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Regulação para Cima
5.
RNA ; 19(10): 1432-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962664

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin µ and ß-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin µ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas ß-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.


Assuntos
Códon sem Sentido/genética , Éxons/genética , Regulação da Expressão Gênica , Degradação do RNAm Mediada por Códon sem Sentido/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Western Blotting , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , RNA Helicases , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Biomolecules ; 14(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199410

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.


Assuntos
Diferenciação Celular , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
7.
Eur J Med Res ; 28(1): 490, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936239

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a primary liver malignancy that is now relatively common worldwide. TMEM79 has been reported to play diagnostic and prognostic markers in a variety of cancers and was found to be closely associated with immune infiltration. SMG5 is associated with immune cell infiltration in HCC. Multiple nonsense-mediated mRNA processes require the involvement of SMG5. TMEM79 and SMG5 complexes may be prognostic markers for prostate cancer. However, the relationship between TMEM79 expression in HCC and prognosis, its role and mechanism of action, and its relationship with SMG5 have not been studied. This article focuses on not only the prognostic role of TMEM79 and its biological significance, including immuno-infiltration, tumor mutations and drug sensitivity, but also the interaction with SMG5 in HCC. METHODS: Differential expression analysis and the multiCox proportional hazards regression analyses of TMEM79 and SMG5 were performed by multiple databases. Then, use IHC to verify our results. Subsequently, we used R software to analyze the clinical phenotype of both: analysis of clinicopathological features, enrichment analysis, analysis of immune infiltration, analysis of immune checkpoints, analysis of drug sensitivity, and immunotherapy. RESULTS: Both the database studies and the results of our research group showed that TMEM79 and SMG5 were differentially expressed in HCC and normal tissues. Validation of immunohistochemistry showed that differential expression of TMEM79 and SMG5, which influenced the prognosis of patients with HCC, could be an independent prognostic factor. Results of the TCGA database study showed that TMEM79 and SMG5 were correlated with immune infiltration, immune checkpoints, drug sensitivity, and immunotherapy. We typed TMEM79-related molecules in HCC according to R software. Two types of TMEM79 correlated with clinical features, survival of patients with HCC, and immune infiltration. CONCLUSION: TMEM79 are highly expressed in HCC and play an important role in the prognosis of patients with HCC. TMEM79 and SMG5 are positively correlated and may both associated with immune infiltration, and closely linked to immune checkpoints, drug sensitivity, and immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Transporte , Imunoterapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Mutação , Prognóstico
8.
Viruses ; 14(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215946

RESUMO

The human retrovirus human T-cell leukemia virus type I (HTLV-1) infects human T cells by vertical transmission from mother to child through breast milk or horizontal transmission through blood transfusion or sexual contact. Approximately 5% of infected individuals develop adult T-cell leukemia/lymphoma (ATL) with a poor prognosis, while 95% of infected individuals remain asymptomatic for the rest of their lives, during which time the infected cells maintain a stable immortalized latent state in the body. It is not known why such a long latent state is maintained. We hypothesize that the role of functional proteins of HTLV-1 during early infection influences the phenotype of infected cells in latency. In eukaryotic cells, a mRNA quality control mechanism called nonsense-mediated mRNA decay (NMD) functions not only to eliminate abnormal mRNAs with nonsense codons but also to target virus-derived RNAs. We have reported that HTLV-1 genomic RNA is a potential target of NMD, and that Rex suppresses NMD and stabilizes viral RNA against it. In this study, we aimed to elucidate the molecular mechanism of NMD suppression by Rex using various Rex mutant proteins. We found that region X (aa20-57) of Rex, the function of which has not been clarified, is required for NMD repression. We showed that Rex binds to Upf1, which is the host key regulator to detect abnormal mRNA and initiate NMD, through this region. Rex also interacts with SMG5 and SMG7, which play essential roles for the completion of the NMD pathway. Moreover, Rex selectively binds to Upf3B, which is involved in the normal NMD complex, and replaces it with a less active form, Upf3A, to reduce NMD activity. These results revealed that Rex invades the NMD cascade from its initiation to completion and suppresses host NMD activity to protect the viral genomic mRNA.


Assuntos
Produtos do Gene rex/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Transporte/metabolismo , Linhagem Celular , Produtos do Gene rex/genética , Genoma Viral/genética , Humanos , Carioferinas/metabolismo , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA Helicases/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Proteína Exportina 1
9.
Genetics ; 209(4): 1073-1084, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903866

RESUMO

The nonsense-mediated messenger RNA (mRNA) decay (NMD) pathway is a cellular quality control and post-transcriptional gene regulatory mechanism and is essential for viability in most multicellular organisms . A complex of proteins has been identified to be required for NMD function to occur; however, there is an incomplete understanding of the individual contributions of each of these factors to the NMD process. Central to the NMD process are three proteins, Upf1 (SMG-2), Upf2 (SMG-3), and Upf3 (SMG-4), which are found in all eukaryotes, with Upf1 and Upf2 being absolutely required for NMD in all organisms in which their functions have been examined. The other known NMD factors, Smg1, Smg5, Smg6, and Smg7, are more variable in their presence in different orders of organisms and are thought to have a more regulatory role. Here we present the first genetic analysis of the NMD factor Smg5 in Drosophila Surprisingly, we find that unlike the other analyzed Smg genes in this organism, Smg5 is essential for NMD activity. We found this is due in part to a requirement for Smg5 in both the activity of Smg6-dependent endonucleolytic cleavage, as well as an additional Smg6-independent mechanism. Redundancy between these degradation pathways explains why some Drosophila NMD genes are not required for all NMD-pathway activity. We also found that while the NMD component Smg1 has only a minimal role in Drosophila NMD during normal conditions, it becomes essential when NMD activity is compromised by partial loss of Smg5 function. Our findings suggest that not all NMD complex components are required for NMD function at all times, but instead are utilized in a context-dependent manner in vivo.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Serina-Treonina Quinases/metabolismo
10.
G3 (Bethesda) ; 3(10): 1649-59, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23893744

RESUMO

During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)-like proteins termed Esl1 and Esl2 that contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways. However, in genome-wide expression array analyses, absence of Esl1 and Esl2 led to more than two-fold deregulation of ∼50 transcripts, most of which were expressed inversely to the appropriate metabolic response to environmental nutrient supply; for instance, normally glucose-repressed genes were derepressed in esl1Δ esl2Δ double mutants during growth in a high-glucose environment. Likewise, in a genome-wide synthetic gene array screen, esl1Δ esl2Δ double mutants were synthetic sick with null mutations for Rim8 and Dfg16, which form the environmental-sensing complex of the Rim101 pH response gene expression pathway. Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Transcrição Gênica , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA