Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031084

RESUMO

The overuse and misuse of antibiotics could significantly increase their accumulation in soils. Consequently, antibiotics possibly enter food chain through crop uptake, posing a threat to global food security. Assessing the exposure risks of antibiotics for crops is crucial for addressing this global issue. In this study, we assessed global antibiotic exposure risk for crops, incorporating a machine learning adsorption model based on 4893 data sets from nine antibiotics. The optimized machine learning adsorption model, using the eXtreme Gradient Boosting algorithm and the class-specific modeling strategy, demonstrated relatively good performance. Notably, we introduced unsaturated soil conditions and considered spatiotemporal variations in soil moisture and temperature for the first time in such a risk assessment. Global distributions of antibiotic exposure risk for crops were predicted for March, June, September, and December. The results indicate that soil moisture significantly influences the exposure risk assessment. Relatively high exposure risk for crops was observed during months with colder local temperatures: generally June for the Southern Hemisphere and December for the Northern Hemisphere. The resulting map highlights high-risk agricultural regions, including southern Canada, western Russia, and southern Australia.

2.
Bull Environ Contam Toxicol ; 109(2): 386-392, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35670838

RESUMO

Although azoxystrobin has been widely applied on various crops, little is known about the bioavailability of azoxystrobin in the soil-vegetable system. In this study, the uptake, accumulation and translocation of azoxystrobin as affected by soil characteristics and plant species were respectively investigated. The accumulation amount of azoxystrobin in pakchoi increased as soil adsorption decreased and was positively associated with its concentration in pore water (Cpw), which was mainly affected by soil organic matter content. Therefore, Cpw could be a candidate for the estimation of azoxystrobin accumulation in pakchoi. In all the tested vegetables, azoxystrobin was mainly accumulated in roots, and its upward translocation was limited. Root lipid content was a major factor affecting the uptake and translocation of azoxystrobin in different vegetables.


Assuntos
Poluentes do Solo , Solo , Produtos Agrícolas , Pirimidinas , Poluentes do Solo/análise , Estrobilurinas , Verduras
3.
Environ Sci Technol ; 55(20): 14316-14328, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34617744

RESUMO

Studying heavy metal adsorption on soil is important for understanding the fate of heavy metals and properly assessing the related environmental risks. Existing experimental methods and traditional models for quantifying adsorption, however, are time-consuming and ineffective. In this study, we developed machine learning models for the soil adsorption of six heavy metals (Cd(II), Cr(VI), Cu(II), Pb(II), Ni(II), and Zn(II)) using 4420 data points (1105 soils) extracted from 150 journal articles. After a comprehensive comparison, our results showed that the gradient boosting decision tree had the best performance for a combined model based on all the data. The Shapley additive explanation method was used to identify the feature importance and the effects of these features on the adsorption, based on which six independent models were developed for the six metals to achieve better model performance than the combined model. Using these independent models, the global distribution of heavy metal adsorption capacities on soils was predicted with known soil properties. Reversed models, including one combined model for all the six metals and six independent models, were also built using the same data sets to predict the heavy metal concentration in water when the adsorbed amount is known for a soil/sediment.


Assuntos
Metais Pesados , Poluentes do Solo , Adsorção , China , Monitoramento Ambiental , Aprendizado de Máquina , Metais Pesados/análise , Solo , Poluentes do Solo/análise
4.
Environ Manage ; 68(2): 210-225, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080046

RESUMO

We aimed to produce simultaneously biosurfactants and lipases in solid state fermentation (SSF) using Aspergillus niger, followed by the use of the fermented media on the bioremediation of oily contaminated soil, in order to valuate agro industrial residuals and reduce the contamination. The biocompounds were produced using wheat bran and corncob (80:20), 5% of soybean oil and 0.5% of sugar cane molasses in SSF for 4 d, producing 4.58 ± 0.69 UE of emulsifying activity and 7.77 ± 1.52 U of lipolytic activity. This fermented media was used in the bioremediation of a 20% biodiesel contaminated soil, evaluating for 90 d microbial growth, contaminant degradation, and production of lipases and biosurfactants in soils. Six experimental strategies (natural attenuation; biostimulation + bioaugmentation + biocompounds; biostimulation + biosurfactant; biocompounds extract; biostimulation; adsorption of contaminant) were realized. The highest degradation of contaminant was verified in 90 d, of 74.40 ± 1.76%, and the production of biosurfactants and lipases in situ in the soil was found in 30 d (6.02 ± 0.24% of reduction in surface tension and 6.62 ± 0.17 UL of lipid activity in soil) for the same experiment (biostimulation + bioaugmentation + biocompounds). The addition of biostimulation + biosurfactant promotes higher biodegradation (66.00 ± 0.92%) of the contaminant than the biocompounds extract (59.58 ± 0.34%). The use of a solid fermented culture medium containing both biocompounds was feasible for the treatment of contaminants, demonstrating the potential for environmental application without the need for purification processes.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Biocombustíveis , Solo , Microbiologia do Solo , Poluentes do Solo/análise
5.
Bull Environ Contam Toxicol ; 105(1): 95-102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32537734

RESUMO

Differential pulse polarographic (DPP) investigations on the reaction of the amino function of glyphosate and glufosinate herbicides with carbon disulphide and copper(II) perchlorate forming copper(III) dithiocarbamate complexes were made in the presence of sodium perchlorate in acetonitrile at dropping mercury electrode (DME). The newly formed herbicide complexes exhibited analytically useful diffusion-controlled peaks at - 115 mV and - 110 mV versus saturated calomel electrode (SCE) with linear relationship between current and concentration. This observation formed the basis for the determination of glyphosate and glufosinate in the concentration ranges 0.34-8.45 µg mL-1 and 0.4-9.91 µg mL-1 respectively with correlation coefficient of 0.999. The method was applied to their determinations in soil, fortified food and spiked water samples to assess their environmental relevance. The recoveries of the herbicides were in the range 89.5%-98.3% with relative standard deviation (RSD) in the ranges 0.8%-1.8% thus showing good accuracy and precision of the method.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Aminobutiratos , Glicina/análise , Solo , Glifosato
6.
Anal Bioanal Chem ; 411(12): 2687-2696, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30931502

RESUMO

The growing use of reclaimed water in agriculture worldwide calls for developing high-sensitivity methods to quantify wastewater-derived organic contaminants in soils so that the potential risk of this irrigation practice can be properly assessed. This work describes an analytical method for the determination of trace levels of 14 drugs that are known to be poorly removed during conventional wastewater treatment in soil. The analytes selected for investigation included ten pharmaceuticals from different therapeutic classes (carbamazepine, diclofenac, cis-diltiazem, lamotrigine, methadone, midazolam, oxcarbazepine, sulfamethoxazole, trimethoprim, valsartan), one illicit drug (cocaine), and three transformation products/metabolites (acridone, 4'-hydroxydiclofenac, and valsartan acid), thereby covering a broad range of physical-chemical properties. The methodology developed was based on ultrasonic solvent extraction (USE) of the analytes from the soil matrix, and subsequent clean-up and analysis of the USE extracts with a fully automated approach by means of solid-phase extraction and liquid chromatography-tandem mass spectrometry detection (online SPE-LC-MS/MS). The method was fully validated with affording method detection and quantification limits ranging from 0.03 to 1 ng g-1 and from 0.09 to 3.3 ng g-1, respectively. This method was applied to investigate the fate of the selected drugs in potting soil irrigated for a long term (60 days) either with water containing the target compounds at a concentration of 200 µg L-1 or with wastewater treatment plant effluent and thus, at real environmental concentrations. All investigated compounds were found to accumulate in soil irrigated with artificially fortified water. The highest accumulation potential was observed for cis-diltiazem followed by methadone and midazolam that presented average concentrations of 1517 ng g-1, 1041 ng g-1, and 962 ng g-1 d.w., respectively. On the contrary, oxcarbazepine (5.8 ng g-1) and sulfamethoxazole (22 ng g-1) were the target drugs presenting the lowest accumulation potential. Only trace levels of ten drugs were measured in soil irrigated with regenerated water (average concentrations between 1.6 and 4.7 ng g-1 d.w.). Graphical abstract.


Assuntos
Compostos Orgânicos/análise , Poluentes do Solo/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Cromatografia Líquida/métodos , Preparações Farmacêuticas/análise , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
7.
Environ Res ; 179(Pt B): 108838, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678730

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) which are structurally featured with one or more aromatic skeletons are often regarded as two important groups of organic pollutants due to the widespread distribution and notorious toxic effects in soils. Relative to the great number of structural analogues or congeners detected in soil, however, the soil adsorption and bioaccumulation of PAHs/PAEs by plant is far less studied for the insufficiency of experimental determinations or lack of insights into the inherent structural requirements. To mechanistically evaluate the congener-specific soil adsorption and bioaccumulation for PAHs/PAEs, the quantitative structure-activity relationships (QSARs) were successfully developed by density functional theory (DFT) computation and partial least squares (PLS) analysis. As verified with the higher cumulative variance coefficients and cross-validated correlation coefficients for strong stability, interpretability and predictability, the QSARs could be used for prediction of unknown adsorption potency or bioavailability within the specified applicability domain, respectively. It was indicated by QSAR that the structural requirements of PAHs/PAEs necessary for strengthening the soil adsorption were mainly attributed to the molecular polarizability and the associated dispersion interaction with soil. As regards the bioaccumulation by carrot, the aggravation of spherical polarity change of molecules and the involved electrostatic interaction with soil entity or electron transfer from the highest occupied molecular orbital (HOMO) of PAHs/PAEs was implied to be inherently decisive for the variance of bioavailability among congeners. Based on the holistic view of negative correlation relationship, the soil adsorption seemed to act as the forceful constraint in decreasing the bioaccumulation of PAHs/PAEs and could also be alternatively gauged as the preliminary evaluation of bioavailability and risks on soil ecosystem. It would thus help better understand the soil adsorption and bioaccumulation with the informative mechanistic insights and provide data support for ecological risk assessment of PAHs/PAEs in soils.


Assuntos
Ácidos Ftálicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Relação Quantitativa Estrutura-Atividade , Poluentes do Solo/química , Adsorção , Bioacumulação , Ecossistema , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-29936562

RESUMO

Methylene-4,4'-dianiline (MDA, CAS-No. 101-77-9) is a high production volume intermediate that is mainly processed to diisocyanates and finally polyurethanes. This review summarizes available data concerning the environmental behavior. When released into the environment, MDA distributes into water and subsequently sediment and soil compartments; the air is of little relevance, owed to the low vapor pressure and short atmospheric half-life, which renders MDA non-critical for long-range transport. Biodegradation data present a diverged picture; in some tests, MDA is not readily biodegradable or even not inherent biodegradable; in other tests, MDA turned out to be readily biodegradable (but failing the 10-d window). The history and composition of the inoculum used for testing seem to play an important role, which is underlined by good test results with adapted inoculum. In soil, initially a rapid mineralization is observed, which slows down within the first days due to competitive chemical absorption. The latter results in degradation rates comparable to that of natural organic matter. Under anaerobic conditions, mineralization is poor. Irreversible chemisorption occurs unless soils/sediments are highly reduced. Half-lives due to primary decay do not indicate MDA to be persistent according to the regulatory guidance used in then EU, Canada, or the USA; in Japan, however, due to test results in MITI degradation tests, MDA would be regarded as persistent. The identification of microbial MDA metabolites deserves further research. MDA is not bioaccumulative, but it is toxic to aquatic organisms and mammals. MDA in pore water of soils is rapidly adsorbed on the surface of plant roots. Test runs were too short to draw a final conclusion with regards to transport to stem, leaves, and fruits. Data from structurally similar compounds indicate that such transport would account for less than 1% of the root-adsorbed material.

9.
J Sep Sci ; 37(14): 1711-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24788687

RESUMO

A novel method based on high-performance ion chromatography inductively coupled plasma mass spectrometry employing strong anion exchange chromatography with HNO3 gradient elution for simultaneous analysis of orthophosphate and myo-inositol hexakisphosphate (IP6 ) in soil solution and plant extracts is presented. As inductively coupled plasma mass spectrometry analysis of phosphorus at m/z 31 is hampered by N-based interferences, (31)P was measured as (31)P(16)O(+) at m/z 47 employing dynamic reaction cell technique with O2 as reaction gas. Orthophosphate and IP6 were separated within a total chromatographic run-time of 12 min revealing a limit of detection of 0.3 µmol/L. The coefficients of determination obtained in a working range of 1-100 and 1-30 µmol/L were 0.9991 for orthophosphate and 0.9968 for IP6, respectively. The method was successfully applied to extracts from three different soils as well as root and shoot extracts of Brassica napus L. The precision of three independently prepared soil extracts was in the range of 4-10% relative standard deviation for PO4 (3-) and 3-8% relative standard deviation for IP6. Soil adsorption/desorption kinetics for IP6/orthophosphate were performed for investigating the sorption behavior of the two P species in the experimental soils.


Assuntos
Brassica napus/química , Cromatografia Líquida de Alta Pressão/métodos , Inositol/análogos & derivados , Espectrometria de Massas/métodos , Fosfatos/química , Extratos Vegetais/química , Plantas/química , Solo/química , Inositol/química , Inositol/isolamento & purificação , Estrutura Molecular , Fosfatos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Brotos de Planta/química
10.
Environ Toxicol Chem ; 42(12): 2580-2588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37638670

RESUMO

Adsorption kinetics and isotherms were determined for 4,4'-methylene dianiline (MDA) on five diverse soils at nominal concentrations of 0.01-1.0 mg L-1 (nominal soil loading 0.1-40 µg gs -1 ). The data were used to model the adsorption process based on the two-step mechanism that is characteristic of the adsorption of aromatic amines, consisting of a physical equilibrium between the aqueous phase and the soil organic matter and a chemical reaction between the adsorbed MDA and reactive sites in the soil organic matter. Generic parameters were determined that enabled application of the model to other soils, which was checked against previously published data for MDA adsorption. At the low concentrations evaluated, the adsorption process took place almost exclusively in the organic matter without the need to account for a separate ion exchange process with the soil mineral fraction. Physical adsorption was found to be mainly dependent on the protonation state of MDA and increased with decreasing pH of the soils. Because of the chemical reaction taking place, adsorption equilibrium constants (organic-carbon partition coefficient [KOC ]) normalized to the organic carbon content in the soil gradually increased with time; and it was demonstrated that, at steady-state conditions, values of log KOC > 3.5 can be expected for most any soil at conservatively estimated potential environmental MDA concentrations. Environ Toxicol Chem 2023;42:2580-2588. © 2023 SETAC.


Assuntos
Poluentes do Solo , Solo , Solo/química , Adsorção , Poluentes do Solo/análise , Carbono
11.
Artigo em Inglês | MEDLINE | ID: mdl-36554534

RESUMO

In view of the problem of Fe3+ pollution in an iron sulfur mine, different layers of loess soil in the Bijie area were used for adsorption to alleviate the mine wastewater pollution by natural treatment. The effects of the initial concentration of Fe3+, adsorption time and pH value on the adsorption performance of top, core and subsoil layers of loess soils were studied by the oscillatory equilibrium method, and the adsorption mechanism of these three soils was analyzed through a kinetic adsorption experiment and infrared spectroscopy. The results showed that the adsorption capacity of Fe3+ was improved by increasing the initial concentration and reaction time, but the adsorption rate of the adsorption capacity of Fe3+ was reduced. The adsorption rate of Fe3+ in the subsoil layer was faster than that in the other two layers. The higher the pH, the higher the adsorption capacity. After the pH was higher than 3.06, it had little effect on the adsorption capacity, but the adsorption rate increased. The first-order kinetic equation, second-order kinetic equation and Elovich equation were suitable for iron adsorption kinetics of three soils. The fitting correlation coefficient of the second-order kinetic equation was close to one, indicating the main role of chemical adsorption. The adsorption rate constant of the subsoil layer was about two times and three times that of the core soil layer and the topsoil layer. The Langmuir model can better fit the isothermal adsorption process. The results of infrared spectroscopy of soil showed that the content of soil organic matter played an important role in the adsorption capacity of Fe3+. The subsoil layer had a higher concentration of organic matter and more abundant functional groups, so the adsorption capacity of Fe3+ was the highest. The results could provide a theoretical basis for the removal of iron in acid mine wastewater.


Assuntos
Ferro , Poluentes do Solo , Solo/química , Adsorção , Águas Residuárias , Poluição Ambiental , Cinética , Poluentes do Solo/química , Concentração de Íons de Hidrogênio
12.
Pest Manag Sci ; 78(12): 5366-5378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057859

RESUMO

BACKGROUND: The adverse effects of pesticides has led to a series of ecological, environmental and public health issues. Amide herbicides are an important agrochemical, yet many are prone to leach and pollute the environment, which limits their further application. In this study, metolachlor (METO) was selected as a model pesticide and a controlled released nanoparticle (NP) system was constructed employing a zeolitic imidazolate framework-8 hybrid inorganic-organic porous material (METO@ZIF-8). RESULTS: The synthesis parameters of METO@ZIF-8 were optimized, and the loading content of METO@ZIF-8 was maximized by a central composite design of response surface test. The NPs were regular dodecahedron with uniform size (mostly 54.3 nm diameter). METO@ZIF-8 had high specific surface area and good dispersal in water. Moreover, it endowed the active ingredient with a pH-responsive release property. The nanocarrier effectively improved the adsorption capacity of METO in soil and reduce the leaching by 10.3-21.7%. Pot experiments suggested that the control effect of METO@ZIF-8 was 16.6 and 48.4% higher than that of METO emulsifiable concentrate (EC) and METO technical concentration (TC) at the recommended dose. Based on the excellent controlled release profiles, METO@ZIF-8 did not affect corn plant growth and significantly reduced the risk of phytotoxicity induced by METO. METO@ZIF-8 effectively reduced acute toxicity in zebrafish compared with METO EC. CONCLUSION: This study explored the fabrication of a nanocarrier for improving the efficacy and promoting the environmental safety of leachable amide herbicides. © 2022 Society of Chemical Industry.


Assuntos
Herbicidas , Estruturas Metalorgânicas , Nanopartículas , Zeolitas , Animais , Estruturas Metalorgânicas/química , Peixe-Zebra , Zeolitas/química , Nanopartículas/química , Acetamidas
13.
Environ Pollut ; 257: 113575, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733970

RESUMO

This study systematically explored the distribution of perfluoroalkyl substances (PFASs) through soil adsorption and plant bioaccumulation in aquatic plant-based systems, derived from a surface flow constructed wetland (CW) planted with Typha angustifolia. The water-soil-plant systems were fortified with eight perfluoroalkyl subsntances (PFASs) at different concentrations. The potential for individual PFAS adsorption onto soil substrate and bioaccumulation in the plants increased with the increasing PFAS initial concentrations. Longer-chain PFASs exhibited higher affinity to soil substrate compared to shorter-chain PFASs. The highest concentration in the soil was observed for PFOS (51.3 ng g-1), followed by PFHxS (9.39 ng g-1), and PFOA (5.53 ng g-1) at low PFAS level. The perfluoroalkyl chain length dependent trend was also seen in the roots with the highest individual PFAS concentration for PFOS (68.9 ng g-1), followed by PFOA (18.5 ng g-1) and PFHxS (13.4 ng g-1). By contrast, shorter-chain PFASs were preferentially translocated from roots to shoots in Typha angustifolia. A significant (p < 0.05) positive correlation between bioaccumulation factor (BAFplant/water) (whole plant) and perfluoroalkyl chain length was observed. PFASs content in the plant compartments increased with increasing PFAS concentrations in the soil. Mass balance analysis indicates that approximately 40.7-99.6% of PFAS mass added to the system was adsorbed onto the soil and bioaccumulated in the plant tissues of T. angustifolia. Soil adsorption played a vital role in PFAS mass distribution. The results of Illumina high-throughput sequencing show that the bacterial diversity decreased upon PFAS exposure. The most predominant phyla retrieved were Proteobacteria (24.7-39.3%), followed by Actinobacteria (4.2-41.1%), Verrucomicrobia (7.9-25.1%), Bacteroidetes (10.2-20.4%), Cyanobacteria (0.4-16.5%), and Firmicutes (1.1-6.4%). The PFAS enrichment caused the changes (p > 0.05) in the structure and composition of bacterial community. This study helps to gain insight into a better understanding of the potential for PFASs distribution in an aquatic plant-based system and the impact on dynamic of microbial community exposed to PFASs.


Assuntos
Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Microbiota , Poluentes Químicos da Água/análise , Adsorção , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Plantas , Solo , Poluentes Químicos da Água/toxicidade
14.
J Pestic Sci ; 42(2): 17-24, 2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363326

RESUMO

The behavior of cyphenothrin (1) [(RS)-α-cyano-3-phenoxybenzyl (1RS)-cis-trans-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylate] in an aquatic environment was investigated by using the 14C-labeled trans and cis isomers. In parallel with the rapid partition from water phase to bottom sediment, 1 was degraded with the first-order half-lives of 2.0 (trans-1) and 7.3 days (cis-1) in the water-sediment system under dark conditions. 1 underwent extensive microbial degradation via ester cleavage to form 3-phenoxybenzoic acid, finally forming bound residues and mineralizing to CO2. Aqueous photolysis significantly accelerated the degradation of 1 with a half-life of <1 day, mainly via photo-induced oxidation at the 2-methylprop-1-enyl group and ester cleavage without cis-trans isomerization. These results strongly suggest that 1 is unlikely to persist in the actual aquatic environment due to its rapid photolysis and extensive microbial degradation.

15.
J Contam Hydrol ; 199: 14-23, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285171

RESUMO

The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h-1 and 0.0068h-1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg-1, and Freundlich coefficients between 1.3 and 34mg1-nLnkg-1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues.


Assuntos
Silicatos de Alumínio/química , Anisóis/análise , Substâncias Explosivas/análise , Modelos Teóricos , Poluentes do Solo/análise , Solo/química , Adsorção , Argila , Condutividade Elétrica , Propriedades de Superfície
16.
Chemosphere ; 144: 895-901, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26421630

RESUMO

To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ≥ 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples.


Assuntos
Poluentes do Solo/química , Solo/química , Tetracloroetileno/química , Adsorção , Temperatura Alta , Hidrocarbonetos/química , Peróxido de Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Poluentes do Solo/análise , Tetracloroetileno/análise
17.
Chemosphere ; 144: 1249-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26473550

RESUMO

NTO (3-nitro-1,2,4-triazol-5-one) is one of the new explosive compounds used in insensitive munitions (IM) developed to replace traditional explosives, TNT and RDX. Data on NTO fate and transport is needed to determine its environmental behavior and potential for groundwater contamination. We conducted a series of kinetic and equilibrium batch experiments to characterize the fate of NTO in soils and the effect of soil geochemical properties on NTO-soil interactions. A set of experiments was also conducted using sterilized soils to evaluate the contribution of biodegradation to NTO attenuation. Measured pH values for NTO solutions decreased from 5.98 ± 0.13 to 3.50 ± 0.06 with increase in NTO concentration from 0.78 to 100 mg L(-1). Conversely, the pH of soil suspensions was not significantly affected by NTO in this concentration range. NTO experienced minimal adsorption, with measured adsorption coefficients being less than 1 cm(3) g(-1) for all studied soils. There was a highly significant inverse relationship between the measured NTO adsorption coefficients and soil pH (P = 0.00011), indicating the role of NTO and soil charge in adsorption processes. In kinetic experiments, 1st order transformation rate constant estimates ranged between 0.0004 h(-1) and 0.0142 h(-1) (equivalent to half-lives of 72 and 2 d, respectively), and correlated positively with organic carbon in the soil. Total attenuation of NTO was higher in untreated versus sterilized samples, suggesting that NTO was being biodegraded. The information presented herein can be used to help evaluate NTO potential for natural attenuation in soils.


Assuntos
Substâncias Explosivas/análise , Nitrocompostos/análise , Poluentes do Solo/análise , Solo/química , Triazóis/análise , Adsorção , Biodegradação Ambiental , Cinética , Modelos Teóricos
18.
Chemosphere ; 107: 432-438, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704143

RESUMO

The application of organic fertilizer to maintain soil fertility and crop yield has been practiced for thousands of years in China. This practice improves soil carbon sequestration, due to the high level of dissolved organic matter (DOM) in organic manure. In this study, batch equilibrium studies were conducted to examine the capacity of three ultisols from areas under different land use patterns to retain dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) extracted from rape cake and chicken manure. The results showed that the amount of DOM removed or released in solution by the soil was a linear function of the initial amount added to the soil-water system; therefore, analysis of sorption isotherms was best conducted using the initial mass isotherm IM method. The ultisol retained, on average, 19.9% of the total DOC and 41.7% of the total DON in solution, suggesting that ultisol has a relatively low DOC adsorption capacity. The ultisol from a bamboo forest was found to have a higher capacity than that from a pear orchard to retain DOC and DON. The adsorption affinities of DOM according to soil type were in the following order: bamboo forest (BF)>tea garden (TG)>pear orchard (PO). These results suggested that the continuous application of high doses of organic manure, particularly rape cake, may saturate the DOC adsorptive sites, thereby permitting increased leaching of DOC and the possibility of ground water contamination. Furthermore, we note that amorphous Fe and Al oxides play an important role in the adsorption capacity of both DOC and DON in ultisols.


Assuntos
Agricultura/estatística & dados numéricos , Silicatos de Alumínio/química , Esterco/análise , Compostos Orgânicos/análise , Compostos Orgânicos/química , Solo/química , Adsorção , Animais , Carbono/análise , Carbono/química , China , Argila , Fertilizantes/análise , Nitrogênio/análise , Nitrogênio/química
19.
Environ Health Toxicol ; 28: e2013006, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700566

RESUMO

OBJECTIVES: In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). METHODS: Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. RESULTS: The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. CONCLUSIONS: This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA