Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Environ Geochem Health ; 46(4): 123, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483669

RESUMO

Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Brasil , Bactérias , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Florestas , Microbiologia do Solo , Esterco/microbiologia
2.
Environ Monit Assess ; 196(6): 538, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730206

RESUMO

The large-scale production of food crops with heavy application of chemical fertilizers in the effort to meet the astronomical increase in food demands may be counterproductive to the goal of food security. This study investigated the effect of different soil treatments on the levels of heavy metals (Cr, Cu, Fe, Ni, Pb, and Zn) in two types of vegetables Lactuca sativa (lettuce) and Daucus carrota (carrot). The potential carcinogenic and non-carcinogenic health risks from their consumption were also evaluated. Planting experiment was set up in a randomized block design, with different soil treatments of soil + cow dung (CD), soil + sewage sludge (SS), soil + chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and untreated soil (UNTRD). The vegetables were harvested at maturity, washed with distilled water, and subjected to an acid digestion process before the levels of heavy metals were measured by inductively coupled plasma spectrometry (ICP-MS). The mean concentrations of the metals in the vegetables across all treatments were below the maximum permissible limits. The pattern of heavy metal accumulation by the vegetables suggested that the lettuce from SS treatment accumulated higher concentrations of heavy metals like Cr (0.20 mg/kg), Cu (3.91 mg/kg), Ni (0.33 mg/kg), and Zn (20.44 mg/kg) than carrot, with highest concentrations of Fe (90.89 mg/kg) and Pb (0.16 mg/kg) recorded in lettuce from NPK treatment. The bioaccumulation factor (BAF) showed that lettuce, a leafy vegetable, has bioaccumulated more heavy metals than carrot, a root vegetable. The BAF was generally below the threshold value of 1 in both vegetables, except in lettuce from NPK and CD treatments and carrot from NPK treatments, with BAF values of 1.6, 1.69, and 1.39, respectively. The cancer risk assessment factors were well below the unacceptable maximum range of 10-4 suggesting that consuming these vegetables might not expose an individual to potential risk of cancer development. The hazard quotient estimations were below the threshold values of 1 for all heavy metals; however, the hazard index (HI) values of 1.27 and 1.58 for lettuce from NPK and SS treatments indicate a potential non-carcinogenic health risk to consumers from intake of all the heavy metals.


Assuntos
Daucus carota , Fertilizantes , Lactuca , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Lactuca/química , Lactuca/crescimento & desenvolvimento , Poluentes do Solo/análise , Daucus carota/química , Medição de Risco , Solo/química , Esterco , Humanos , Monitoramento Ambiental
3.
Environ Res ; 232: 116315, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276976

RESUMO

With the increased global interest in sequestering carbon in soil, it is necessary to understand the composition of different pools of soil organic matter (SOM) that cycle over suitably short timeframes. To explore in detail the chemical composition of agroecologically relevant yet distinct fractions of SOM, the light fraction of SOM (LFOM), the 53-µm particulate organic matter (POM), and the mobile humic acid (MHA) fractions were sequentially extracted from agricultural soils and characterized using both 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and also Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The NMR results showed a decrease in the O-alkyl C region assigned to carbohydrates (51-110 ppm) and an increase in the aromatic region (111-161 ppm) proceeding from the LFOM to the POM and then to the MHA fraction. Similarly, based on the thousands of molecular formulae assigned to the peaks detected by FT-ICR-MS, condensed hydrocarbons were dominant only in the MHA, while aliphatic formulae were abundant in the POM and LFOM fractions. The molecular formulae of the LFOM and POM were mainly grouped in the high H/C lipid-like and aliphatic space, whereas a portion of the MHA compounds showed an extremely high (17-33, average of 25) double bond equivalent (DBE) values, corresponding to low H/C values of 0.3-0.6, representative of condensed hydrocarbons. The labile components appeared most pronounced in the POM (93% of formulae have H/C ≥ 1.5) similar to the LFOM (89% of formulae have H/C ≥ 1.5) but in contrast to the MHA (74% of formulae have H/C ≥ 1.5). The presence of both labile and recalcitrant components in the MHA fraction suggests that the stability and persistence of soil organic matter is influenced by a complex interaction of physical, chemical, and biological factors in soil. Understanding the composition and distribution of different SOM fractions can provide valuable insights into the processes that govern carbon cycling in soils, which can help inform strategies for sustainable land management and climate change mitigation.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Substâncias Húmicas/análise , Agricultura , Carbono , Espectrometria de Massas , Material Particulado/análise
4.
J Environ Manage ; 331: 117162, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701885

RESUMO

Extensive calls for increased tree planning worldwide are highlighting the need for management changes in the field tree nursery sector. Healthy soil is the foundation for sustainable agricultural systems, and best practices for soil management confer tangible benefits to producers as well as broader system-wide benefits. However, field tree producers lack the foundational resources needed to implement, manage, and evaluate soil health practices within their operations. Furthermore, tree producers are unique in that their primary product is central to the sustainable development of urban spaces and are facing increased demand for high-quality trees. There is subsequently a two-pronged need. First, a greater understanding of the key objectives, opportunities, and challenges driving soil management in tree production is required to support the development of specified practices, within the sector. Second, a greater characterization of the short- and long-term value of trees is required to incentivize the soil health practices that will support resilience in tree production systems. The study characterizes the soil health and management practices implemented in Ontario by field tree nursery producers. A questionnaire was administered in the summer of 2020 to Ontario tree nursery producers within the Landscape Ontario Horticultural Trades Association (N = 29). Responding producers provided insight into soil management practices, opportunities and challenges. Tree nursery producers expressed a need for resources to support cover crop usage and comprehensive soil testing to improve tree performance. Reflection on current soil management challenges and opportunities highlights the benefits of considering soil management as one aspect within the broader social-ecological system.


Assuntos
Solo , Árvores , Agricultura , Ecossistema , Inquéritos e Questionários
5.
J Environ Manage ; 345: 118582, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540979

RESUMO

Globally, agriculture has had a significant and often detrimental impact on soil. The continued capacity of soil to function as a living ecosystem that sustains microbes, plants, and animals (including humans), its metaphorical health, is of vital importance across geographic scales. Healthy soil underpins food production and ecosystem resilience against a changing climate. This paper focuses on assessing soil health, an area of increasing interest for farming communities, researchers, industry and policy-makers. Without accessible and reliable soil assessment, any management and interventions to improve soil health are likely to be sub-optimal. Here we explore available soil health assessments (SHAs) that may be feasible for farmers of varying income levels and suitable for broad geographic application. Whilst there is a range of existing approaches to SHA, we find that no one framework currently meets these broad aims. Firstly, reliance on expensive and logistically complex laboratory methods reduces viability and accessibility for many farmers. Secondly, lack of defined indicator baselines and associated thresholds or gradients for soil health prevents the assessment of soil measurements against achieving optima for a given set of local soil-climate conditions. Since soils vary greatly, these baselines and thresholds must be defined considering the local biogeographic context; it is inappropriate to simply transfer calibrated information between contexts. These shortcomings demand progress towards a feasible, globally applicable and context-relevant SHA framework. The most feasible SHAs we identified were developed locally in conjunction with farmers, who have been repeatedly found to assess the health of their soils accurately, often using relatively simple, observable indications. To progress, we propose assessment of which indicators add information to a SHA in local contexts, with a focus on sufficiency, to reduce data burden. Provision of a standardised protocol for measurement and sampling that considers the reliability and accuracy of different methods would also be extremely valuable. For greatest impact, future work should be taken forward through a cross-industry collaborative approach involving researchers, businesses, policy makers, and, above all, farmers, who are both experts and users.


Assuntos
Fazendeiros , Solo , Animais , Humanos , Ecossistema , Reprodutibilidade dos Testes , Agricultura
6.
J Environ Manage ; 345: 118518, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385197

RESUMO

Clarifying the influences of biochar input on the rhizosphere dissipation and plant absorption of pesticides is a crucial prerequisite for utilizing biochar in the restoration of pesticide-contaminated soils. Nevertheless, the application of biochar to pesticide-contaminated soils does not always achieve consistent results on the rhizosphere dissipation and plant absorption of pesticides. Under the new situation of vigorously promoting the application of biochar in soil management and carbon sequestration, a timely review is needed to further understand the key factors affecting biochar remediation of pesticide-contaminated soil. In this study, a meta-analysis was conducted utilizing variables from three dimensions of biochar, remediation treatment, and pesticide/plant type. The pesticide residues in soil and the pesticide uptake by plant were used as response variables. Biochar with high adsorption capacity can impede the dissipation of pesticides in soil and mitigate their absorption by plants. The specific surface area of biochar and the type of pesticide are critical factors that affect pesticide residues in soil and plant uptake, respectively. Applying biochar with high adsorption capacity, based on specific dosages and soil characteristics, is recommended for the remediation of continuously cultivated soil contaminated with pesticides. This article aims to provide a valuable reference and understanding for the application of biochar-based soil remediation technology and the treatment of pesticide pollution in soil.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Praguicidas/química , Rizosfera , Poluentes do Solo/química , Solo/química , Carvão Vegetal/química
7.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630343

RESUMO

The goal of the present study is to assess the soil quality in Bulgaria using (i) an appropriate set of soil quality indicators, namely primary nutrients (C, N, P), acidity (pH), physical clay content and potentially toxic elements (PTEs: Cu, Zn, Cd, Pb, Ni, Cr, As, Hg) and (ii) respective data mining and modeling using chemometrical and geostatistical methods. It has been shown that five latent factors are responsible for the explanation of nearly 70% of the total variance of the data set available (principal components analysis) and each factor is identified in terms of its contribution to the formation of the overall soil quality-the mountain soil factor, the geogenic factor, the ore deposit factor, the low nutrition factor, and the mercury-specific factor. The obtained soil quality patterns were additionally confirmed via hierarchical cluster analysis. The spatial distribution of the patterns throughout the whole Bulgarian territory was visualized via the mapping of the factor scores for all identified latent factors. The mapping of identified soil quality patterns was used to outline regions where additional measures for the monitoring of the phytoavailability of PTEs were required. The suggested regions are located near to thermoelectric power plants and mining and metal production facilities and are characterized by intensive agricultural activity.

8.
Environ Monit Assess ; 195(10): 1167, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682342

RESUMO

This work focuses on evaluating the spatial variability of chemical attributes of soils under different agricultural use and native forest, indicating which are the possible indicator attributes of changes in environmental, through the use and management of the soil. The study was carried out in the southern region of the Amazonas state, in an Argissolo Vermelho-Amarelo (Ultisol). Sampling grids were established measuring: 90 m × 70 m with regular soil collection spacing of 10 m for the guarana and forest areas; 90 m × 56 m spaced at 10 m × 8 m for annatto area; and 54 m × 42 m with spacing between points of 6 m for the cupuaçu area, totaling 80 sampling points in each area, with soil samples collected at depths of 0.0-0.05; 0.05-0.10 m and 0.10-0.20 m. The following attributes were determined: pH, Al3+, K+, Ca2+, Mg2+, P, H + Al, CEC, V% and m%. Descriptive, geostatistical and multivariate statistical analyzes were performed. The results show that it is possible to state that the descriptive, geostatistical and multivariate statistical techniques were able to identify the difference between the spatial variability of the attributes according to each specific use of individual soils. The multivariate analysis made it possible to select the attributes that most contribute to the variability of these soils, and with that, it was found that the forest showed less spatial variability in the surface layer, with higher reach values by scaled semivariograms.


Assuntos
Monitoramento Ambiental , Solo , Brasil , Agricultura , Florestas
9.
Arch Microbiol ; 204(8): 458, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788780

RESUMO

To increase our knowledge on how application of organic material alters soil microbial populations and functionality, shotgun metagenomic sequencing was used to determine the microbial communities and their potential functionality in an arable soil amended with young maize plants (Zea mays L.) in a laboratory experiment after 3 days. The relative abundance of bacterial and viral groups was strongly affected by organic material application, whereas that of the archaeal, protist and fungal groups was less affected. Cellulose degraders with copiotrophic lifestyle (e.g., Betaproteobacteria) were enriched in the amended soil, whereas the groups with slow growing oligotrophic and chemolithoautotrophic metabolism within Bacteria and Archaea were greater in the unamended than in the amended soil. The soil viral structure and richness were also affected. Caudovirales was the dominant viral family, with members of Siphoviridae enriched in the amended soil and members of Myoviridae in the unamended soil. More specialized metabolic traits related to both the degradation of complex C compounds and denitrification related genes were enriched in the young maize plant amended soil than in the unamended soil, whereas nitrification related genes were enriched in the latter. Copiotrophic life-style bacterial groups were enriched in the amended soil, whereas oligotrophic life-style bacterial groups in the unamended soil. Many bacterial and viral phylotypes were affected by the application of young maize plants, but the number of soil fungi, archaea and protists affected was smaller. Metabolic functionality was affected by the application of organic material as the relative abundance of genes involved in the denitrification process was higher in the maize plant amended soil than in the unamended soil and those involved in the nitrification process was higher in the unamended soil.


Assuntos
Microbiota , Zea mays , Agricultura , Archaea/genética , Celulose , Metagenômica , Microbiota/genética , Solo
10.
Ann Bot ; 130(4): 547-560, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947944

RESUMO

BACKGROUND AND AIMS: Decomposition is a major ecosystem process which improves soil quality. Despite that, only a few studies have analysed decomposition in an agricultural context, while most agrosystems (e.g. vineyards) are facing decreasing soil quality. The objective of this study is to understand the impacts of both pedoclimate and weed management on the mass loss of vineyard weed communities during the early stages of the decomposition process through their functional properties. METHODS: In 16 Mediterranean vineyards representing both a pedoclimate and a soil management gradient, we measured the mass loss of green above-ground biomass of 50 weed communities during decomposition in standard conditions and key leaf traits of dominant species [e.g. leaf dry matter content (LDMC) and leaf lignin to nitrogen ratio (lignin:N)]. Both the mean [i.e. community-weighted mean (CWM)] and diversity (i.e. Rao index) were computed at the community level. Path analysis was used to quantify the effects of agro-environmental filters on the mass loss of weed communities through their functional properties. KEY RESULTS: Tillage and mowing filtered more decomposable communities than chemical weeding (16 and 8 % of higher mass loss after 2 months of decomposition). Path analysis selected weed management practice type as the main factor determining mass loss through its effect on functional properties, while soil and climate had minor and no effects, respectively. Chemical weeding favoured communities with higher investment in resistant leaves (e.g. 38 % higher lignin:N, 22 % lower leaf nitrogen content) which resulted in lower mass loss compared with tilled and mowed communities. Mowing favoured communities with 47 % higher biomass and with 46 % higher nitrogen content. CONCLUSIONS: Weed management significantly influenced weed mass loss, while the pedoclimate had little effect. Our results suggest that mowing is a promising alternative to herbicide use, favouring higher biomass, nitrogen content and decomposability potential of weeds.


Assuntos
Herbicidas , Solo , Ecossistema , Fazendas , Lignina , Nitrogênio/análise
11.
J Environ Manage ; 305: 114427, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998063

RESUMO

Soil organic carbon (SOC) is a key soil quality indicator, as it is a source and storage of plant nutrients and plays a vital role in soil fertility and productivity maintenance. Intensification of agriculture is known to cause SOC decline; however, much of the evidence stems from field-scale experimental trials. The primary aim of this study is to investigate how more than 20 years of agricultural land use intensification in Bangladesh has influenced SOC levels at landscape levels. This was achieved by revisiting in 2012 four sub-sites from the Brahmaputra and Ganges alluviums which were previously sampled (1989-92) by the Soil Resource Development Institute and collecting 190 new samples. These were located at different elevations and subjected to differing amounts of inundation. The SOC was determined using the same method, potassium dichromate wet oxidation, used in the 1989-92 campaign. A comparison of the SOC in the 2012 samples with their historic levels (1989-92) revealed that overall SOC declined significantly across both alluviums as well at their four sub-sites. Further analysis, however, showed that SOC has declined more at higher sites. The higher sites are inundated to a limited level, which makes them suitable for growing multiple crops. Among the land types considered here, the low land sites (because of their topographical position) remain inundated for a greater part of the year, allowing a maximum of only one crop of submerged rice. As a result of reduced biomass decomposition due to anaerobic conditions when inundated, and lower land use/cropping intensity, SOC accretion has occurred in the lower land sites. The SOC levels in South Asian countries are inherently low and agricultural land use intensification fuelled by growing food production demand is causing further SOC loss, which has the potential to jeopardise food security and increase the environmental impact of agriculture.


Assuntos
Carbono , Solo , Agricultura , Bangladesh , Carbono/análise , Sequestro de Carbono
12.
Environ Manage ; 69(1): 31-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633488

RESUMO

The exponential rise of information available means we can now, in theory, access knowledge on almost any question we ask. However, as the amount of unverified information increases, so too does the challenge in deciding which information to trust. Farmers, when learning about agricultural innovations, have historically relied on in-person advice from traditional 'experts', such as agricultural advisers, to inform farm management. As more farmers go online for information, it is not clear whether they are now using digital information to corroborate in-person advice from traditional 'experts', or if they are foregoing 'expert' advice in preference for peer-generated information. To fill this knowledge gap, we sought to understand how farmers in two contrasting European countries (Hungary and the UK) learnt about sustainable soil innovations and who influenced them to innovate. Through interviews with 82 respondents, we found farmers in both countries regularly used online sources to access soil information; some were prompted to change their soil management by farmer social media 'influencers'. However, online information and interactions were not usually the main factor influencing farmers to change their practices. Farmers placed most trust in other farmers to learn about new soil practices and were less trusting of traditional 'experts', particularly agricultural researchers from academic and government institutions, who they believed were not empathetic towards farmers' needs. We suggest that some farmers may indeed have had enough of traditional 'experts', instead relying more on their own peer networks to learn and innovate. We discuss ways to improve trustworthy knowledge exchange between agricultural stakeholders to increase uptake of sustainable soil management practices, while acknowledging the value of peer influence and online interactions for innovation and trust building.


Assuntos
Agricultura , Fazendeiros , Europa (Continente) , Fazendas , Humanos , Solo
13.
J Sci Food Agric ; 102(15): 7379-7386, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35781712

RESUMO

BACKGROUND: Given the interest in mitigating the consequences of soil deterioration and climate change impacts on durum wheat grain, the objective of our study was to evaluate the effect of two soil management systems - conservation agriculture (CA) and conventional tillage (CT) - on the grain composition and nutritional value of two durum wheat varieties (Karim and Monastir) grown over two cropping seasons (2018-2019 and 2019-2020). RESULTS: The soil management system had an impact on all studied parameters, namely 1000-kernel weight (TKW), proximate composition, energy value, total phenol content (TPC), antioxidant capacities (DPPH and ABTS) and mineral elements (K, P and Na), excluding hectoliter weight. CA resulted in high moisture content, crude protein, P, K, Na, TPC, DPPH and ABTS. However, TKW, crude fat, crude ash, energy value, and total carbohydrate were higher when using CT. CONCLUSION: A 2-year adoption of conservation agriculture after a long-term conversion enhanced some compositional parameters and nutritional value of durum wheat varieties. The interaction with year and/or variety was very influential. © 2022 Society of Chemical Industry.


Assuntos
Agricultura , Triticum , Triticum/química , Agricultura/métodos , Solo/química , Valor Nutritivo
14.
J Sci Food Agric ; 102(7): 2893-2902, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34755346

RESUMO

BACKGROUND: Water-soluble fluoride (WS-F) can be absorbed directly by tea plants from soil and comprises a major source of dietary F in tea consumers. To reveal the WS-F accumulation in tea leaves and assess WS-F health risks, 70 sets of samples including tea leaves at three maturity stages and corresponding topsoil were collected from Xinyang, China. The WS-F contents in tea samples and pH values in soil samples were determined. RESULTS: The contents of WS-F in tea leaves exhibited a positive correlation with leaf maturity. The contents of WS-F in tea leaves showed a positive correlation with WS-F contents in the soil as the soil pH value exceeds 5. All the bud with two leaves samples, 84.29% of the third to sixth leaves samples, and 78.57% mature leaves samples in 5-min infusion tend to be no health threat. The leaching characteristics of WS-F from tea leaves were influenced by the leaf maturity and soaking time. CONCLUSION: Taking measures to control pH and WS-F concentration of plantations soil, as well as drinking tea infusion made from young leaves or reducing soaking time could decrease the WS-F health risk. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis , Solo , Camellia sinensis/química , China , Fluoretos/análise , Folhas de Planta/química , Medição de Risco , Solo/química , Chá/química , Água/análise
15.
Environ Monit Assess ; 195(1): 171, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459271

RESUMO

The intensification of specific land management operations (tillage, herbicide, etc.) is increasing land degradation and contributing to ecosystem pollution. Mulches can be a sustainable tool to counter these processes. This is particularly relevant for rural areas in low-income countries where agriculture is a vital sector. In this research, the environmental impact of different rates of wheat residues (no residues, 25, 50, 75, and 100%) in corn silage cultivation was evaluated using the life cycle assessment (LCA) method under conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region in Karaj, Iran. Results showed that in both tillage systems, marine aquatic ecotoxicity (ME) and global warming potential (GWP) had the highest levels of pollution among the environmental impact indicators. In CT systems, the minimum (17,730.70 kg 1,4-dichlorobenzene (DB) eq.) and maximum (33,683.97 kg 1,4-DB eq.) amounts of ME were related to 0 and 100% wheat residue rates, respectively. Also, in the CT system, 0 and 100% wheat residue rates resulted in minimum (176.72 kg CO2 eq.) and maximum (324.95 kg CO2 eq.) amounts of GWP, respectively. However, in the NT system, the 100% wheat residue rate showed the minimum amounts of ME (11,442.39 kg 1,4-DB eq.) and GWP (120.21 kg CO2 eq.). Also, in the NT system, maximum amounts of ME (17,174 kg 1,4-DB eq.) and GWP (175.60 kg CO2 eq.) were observed with a zero wheat residue rate. On-farm emissions and nitrogen fertilizers were the two factors with the highest contribution to the degradation related to environmental parameters at all rates of wheat residues. Moreover, in the CT system, the number of environmental pollutants increased with the addition of a higher wheat residue rate, while in the NT system, increasing residue rates decreased the amount of environmental pollutants. In conclusion, this LCA demonstrates that the NT system with the full retention of wheat residues (100%) is a more environmentally sustainable practice for corn silage production. Therefore, it may be considered one of the most adequate management strategies in this region and similar semi-arid conditions. Further long-term research and considering more environmental impact categories are required to assess the real potential of crop residues and tillage management for sustainable corn silage production.


Assuntos
Poluentes Ambientais , Silagem , Zea mays , Triticum , Ecossistema , Dióxido de Carbono , Monitoramento Ambiental
16.
Environ Monit Assess ; 195(1): 52, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316531

RESUMO

Climate change poses serious risks to Indian agriculture as half of the agricultural land of the country is rainfed. Climate change affects crop yield, soil processes, water availability, and pest dynamics. Several adaptation strategies such as heat- and water stress-tolerant crop varieties, stress-tolerant new crops, improved agronomic management practices, improved water use efficiency, conservation agriculture practices and improved pest management, improved weather forecasts, and other climate services are in place to minimize the climatic risks. The agriculture sector contributes 14% of the greenhouse gas (GHG) from the country. Mitigation of GHG emission from agriculture can be achieved by changing land-use management practices and enhancing input-use efficiency. Experiments in India showed that methane emission from lowland rice fields can be reduced by 40-50% with alternate wetting and drying (AWD), growing shorter duration varieties, and using neem-coated urea according to soil health card (SHC) and leaf color chart (LCC). Dry direct-seeding of rice, which does not require continuous soil submergence, can reduce methane emission by 70-75%. Sequestration of carbon (C) in agricultural soil can be promoted with the application of organic manure, crop residues, and balanced nutrients. India has taken several proactive steps for addressing the issues of climate change in agriculture. Recently, it has also committed for reducing GHG emission intensity by 45% by 2030 and achieving net zero emission by 2070. The paper discusses the major impacts of climate change, potential adaptation, and mitigation options and the initiatives of Govt. of India in making Indian agriculture climate-smart.


Assuntos
Gases de Efeito Estufa , Oryza , Mudança Climática , Monitoramento Ambiental , Agricultura , Solo/química , Metano/análise , Óxido Nitroso/análise
17.
Environ Monit Assess ; 194(4): 282, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294667

RESUMO

Predicting spatial explicit information of soil nutrients is critical for sustainable soil management and food security under climate change and human disturbance in agricultural land. Digital soil mapping (DSM) techniques can utilize soil-landscape information from remote sensing data to predict the spatial pattern of soil nutrients, and it is important to explore the effects of remote sensing data types on DSM. This research utilized Landsat 8 (LT), Sentinel 2 (ST), and WorldView-2 (WV) remote sensing data and employed partial least squares regression (PLSR), random forest (RF), and support vector machine (SVM) algorithms to characterize the spatial pattern of soil total nitrogen (TN) in smallholder farm settings in Yellow River Basin, China. The overall relationships between TN and spectral indices from LT and ST were stronger than those from WV. Multiple red edge band-based spectral indices from ST and WV were relevant variables for TN, while there were no red band-based spectral indices from ST and WV identified as relevant variables for TN. Soil moisture and vegetation were major driving forces of soil TN spatial distribution in this area. The research also concluded that farmlands of crop rotation had relatively higher TN concentration compared with farmlands of monoculture. The soil prediction models based on WV achieved relatively lower model performance compared with those based on ST and LT. The effects of remote sensing data spectral resolution and spectral range on enhancing soil prediction model performance are higher than the effects of remote sensing data spatial resolution. Soil prediction models based on ST can provide location-specific soil maps, achieve fair model performance, and have low cost. This research suggests DSM research utilizing ST has relatively high prediction accuracy, and can produce soil maps that are fit for the spatial explicit soil management for smallholder farms.


Assuntos
Nitrogênio , Solo , China , Monitoramento Ambiental , Fazendas , Humanos , Rios
18.
Glob Chang Biol ; 27(9): 1721-1736, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657680

RESUMO

The global demand for beef is rapidly increasing (FAO, 2019), raising concern about climate change impacts (Clark et al., 2020; Leip et al., 2015; Springmann et al., 2018). Beef and dairy contribute over 70% of livestock greenhouse gas emissions (GHG), which collectively contribute ~6.3 Gt CO2 -eq/year (Gerber et al., 2013; Herrero et al., 2016) and account for 14%-18% of human GHG emissions (Friedlingstein et al., 2019; Gerber et al., 2013). The utility of beef GHG mitigation strategies, such as land-based carbon (C) sequestration and increased production efficiency, are actively debated (Garnett et al., 2017). We compiled 292 local comparisons of "improved" versus "conventional" beef production systems across global regions, assessing net GHG emission data from Life Cycle Assessment (LCA) studies. Our results indicate that net beef GHG emissions could be reduced substantially via changes in management. Overall, a 46 % reduction in net GHG emissions per unit of beef was achieved at sites using carbon (C) sequestration management strategies on grazed lands, and an 8% reduction in net GHGs was achieved at sites using growth efficiency strategies. However, net-zero emissions were only achieved in 2% of studies. Among regions, studies from Brazil had the greatest improvement, with management strategies for C sequestration and efficiency reducing beef GHG emissions by 57%. In the United States, C sequestration strategies reduced beef GHG emissions by over 100% (net-zero emissions) in a few grazing systems, whereas efficiency strategies were not successful at reducing GHGs, possibly because of high baseline efficiency in the region. This meta-analysis offers insight into pathways to substantially reduce beef production's global GHG emissions. Nonetheless, even if these improved land-based and efficiency management strategies could be fully applied globally, the trajectory of growth in beef demand will likely more than offset GHG emissions reductions and lead to further warming unless there is also reduced beef consumption.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Animais , Brasil , Sequestro de Carbono , Bovinos , Humanos , Estágios do Ciclo de Vida
19.
Glob Chang Biol ; 27(20): 5383-5391, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288295

RESUMO

More than 10% of Australia's 49 M ha of grassland is considered degraded, prompting widespread interest in the management of these ecosystems to increase soil carbon (C) sequestration-with an emphasis on long-lived C storage. We know that management practices that increase plant biomass also increase C inputs to the soil, but we lack a quantitative understanding of the fate of soil C inputs into different soil organic carbon (SOC) fractions that have fundamentally different formation pathways and persistence in the soil. Our understanding of the factors that constrain SOC formation in these fractions is also limited, particularly within tropical climates. We used isotopically labelled residue (13 C) to determine the fate of residue C inputs into short-lived particulate organic matter (POM) and more persistent mineral-associated organic matter (MAOM) across a broad climatic gradient (ΔMAT 10°C) with varying soil properties. Climate was the primary driver of aboveground residue mass loss which corresponded to higher residue-derived POM formation. In contrast, MAOM formation efficiency was constrained by soil properties. The differential controls on POM and MAOM formation highlight that a targeted approach to grassland restoration is required; we must identify priority regions for improved grazing management in soils that have a relatively high silt+clay content and cation exchange capacity, with a low C saturation in the silt+clay fraction to deliver long-term SOC sequestration.


Assuntos
Carbono , Solo , Sequestro de Carbono , Ecossistema , Pradaria
20.
Arch Microbiol ; 203(7): 4609-4618, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165624

RESUMO

This work aims to characterize the arbuscular mycorrhizal association between maize genotypes and the effects of soil physical-chemical attributes on the symbiosis. A preliminary greenhouse assay evaluated five maize landraces and five conventional modern genotypes in non-sterile, low-P soil. Sixty days after sowing, we measured plant height, stem diameter, shoot and root dry biomass, root colonization structures, and shoot P concentration and total accumulation. In a second stage, a 2-year on-farm study evaluated how soil physical-chemical attributes in fields with three plant genotype groups affected the arbuscular mycorrhizal fungal symbiosis in a maize diversity microcenter in Southern Brazil. We collected soil and plant material in farms growing landrace, conventional modern genotypes, or genetically modified (GM) maize. There were five collection points at each group, and we measured mycorrhizal colonization, soil physicochemical attributes, and shoot phosphorus concentration. The greenhouse study showed that genotypes have different growth strategies for root production and shoot growth. No differences in mycorrhizal colonization rates occurred among landraces and modern maize genotypes in the low-P soil. The field study showed that soil and climate conditions had a more marked effect on mycorrhizal root colonization than plant genotype groups (landrace, conventional modern genotypes, or GM maize).


Assuntos
Genótipo , Micorrizas , Raízes de Plantas , Zea mays , Agricultura , Brasil , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Solo/química , Tempo (Meteorologia) , Zea mays/genética , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA