RESUMO
α-Solanine has been shown to exhibit anti-inflammatory and anti-tumour properties; however, its efficacy in treating osteoarthritis (OA) remains ambiguous. The study aimed to evaluate the therapeutic effects of α-solanine on OA development in a mouse OA model. The OA mice were subjected to varying concentrations of α-solanine, and various assessments were implemented to assess OA progression. We found that α-solanine significantly reduced osteophyte formation, subchondral sclerosis and OARSI score. And it decreased proteoglycan loss and calcification in articular cartilage. Specifically, α-solanine inhibited extracellular matrix degradation by downregulating collagen 10, matrix metalloproteinase 3 and 13, and upregulating collagen 2. Importantly, α-solanine reversed chondrocyte pyroptosis phenotype in articular cartilage of OA mice by inhibiting the elevated expressions of Caspase-1, Gsdmd and IL-1ß, while also mitigating aberrant angiogenesis and sensory innervation in subchondral bone. Mechanistically, α-solanine notably hindered the early stages of OA progression by reducing I-κB phosphorylation and nuclear translocation of p65, thereby inactivating NF-κB signalling. Our findings demonstrate the capability of α-solanine to disrupt chondrocyte pyroptosis and sensory innervation, thereby improving osteoarthritic pathological progress by inhibiting NF-κB signalling. These results suggest that α-solanine could serve as a promising therapeutic agent for OA treatment.
Assuntos
NF-kappa B , Osteoartrite , Solanina , Camundongos , Animais , NF-kappa B/metabolismo , Piroptose , Condrócitos/metabolismo , Osteoartrite/metabolismo , Modelos Animais de Doenças , Colágeno/metabolismo , Interleucina-1beta/metabolismo , Inflamação/patologiaRESUMO
Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 µM and BHT 20 µM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.
Assuntos
Antioxidantes , Solanina , Antioxidantes/farmacologia , Hidroxitolueno Butilado , Hidroxianisol Butilado/farmacologia , Acrilamida/toxicidade , Proteínas , DNA , RNARESUMO
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Assuntos
4-Aminobutirato Transaminase/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminase/genética , Edição de Genes , Hidroxilação , Cetocolesteróis/biossíntese , Cetocolesteróis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/fisiologia , Saponinas/biossíntese , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologiaRESUMO
BACKGROUND: α-Solanine is a natural toxic glycoalkaloid produced in some species of the Solanaceae family with antiproliferative activity in various cancers. OBJECTIVE: This study aimed to investigate the effect of α-solanine on the oxidative stress status in human hepatocellular carcinoma HepG2 cells and to evaluate its influence on microRNAs (miRNAs) associated with oxidative stress and NF-κB regulation. METHODS: The prooxidant effect of α-solanine was tested by the decay rate of the fluorescent probe, ß-phycoerythrin, and by measuring malondialdehyde, reduced Glutathione, catalase, and superoxide dismutase following treatment of HepG2 cells with low doses of α-solanine. Immunocytochemical techniques were used to detect mitochondrial membrane potential (ΔΨm) and NF-κB protein. The gene expression of NF-κB and miRNAs was evaluated by real-time PCR. RESULTS: α-Solanine is a prooxidant that causes a rapid decay in the fluorescence intensity of ß-phycoerythrin. It induces oxidative stress-related alterations such as increased lipid peroxidation and reduced antioxidant markers. Oxidative stress induced by α-solanine was mediated by decreased ΔΨm, increased NF-κB expression, upregulation of miRNAs that control oxidative stress by regulating the NF-κB pathway, and downregulation of oncogenic miRNAs that inhibit the NF-κB pathway. CONCLUSION: α-Solanine-induced oxidative stress is mediated by alterations in the NF-κB pathway with a detected crosstalk between α-solanine treatment and the expression of oxidative stress-responsive miRNAs.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Estresse Oxidativo , Apoptose , Carcinoma Hepatocelular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , SolaninaRESUMO
MAIN CONCLUSION: Phytosterol homeostasis may be maintained in leaves through diversion of intermediates into glycoalkaloid biosynthesis, whereas in tuber flesh, excess intermediates are catalyzed by tuber-specific StLAS - like , resulting in low tuber glycoalkaloids. Lanosterol synthase (LAS) and cycloartenol synthase (CAS) are phylogenetically related enzymes. Cycloartenol is the accepted precursor leading to cholesterol and phytosterols, and in potato, to steroidal glycoalkaloid (SGA) biosynthesis. LAS was also shown to synthesize some plant sterols, albeit at trace amounts, questioning its role in sterol homeostasis. Presently, a potato LAS-related gene (StLAS-like) was identified and its activity verified in a yeast complementation assay. A transgenic approach with targeted gene expression and metabolic profiling of sterols and SGAs was used. Analyses of StLAS-like transcript levels and StLAS-like-promoter::GUS reporter assays indicated specific expression in tuber flesh tissue. Overexpression of Arabidopsis AtLAS in leaves where the endogenic StLAS-like is not expressed, resulted with increased SGA level and reduced phytosterol level, while in the tuber flesh SGA level was reduced. StLAS-like expression only in tuber flesh may explain the differential accumulation of SGAs in commercial cultivars-low in tubers, high in leaves. In leaves, to maintain phytosterol homeostasis, an excess of intermediates may be diverted into SGA biosynthesis, whereas in tuber flesh these intermediates are catalyzed by tuber-specific StLAS-like instead, resulting in low levels of SGA.
Assuntos
Arabidopsis/enzimologia , Transferases Intramoleculares/metabolismo , Fitosteróis/metabolismo , Solanina/metabolismo , Solanum tuberosum/enzimologia , Triterpenos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Genes Reporter , Transferases Intramoleculares/genética , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Solanum tuberosum/genéticaRESUMO
α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/ß (IKKα/ß). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1ß, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Colite/prevenção & controle , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Choque Séptico/prevenção & controle , Solanina/farmacologia , Solanum tuberosum/química , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Currently, lung cancer is still a main cause of malignancy-associated death worldwide. Even though various methods for prevention and treatment of lung cancer have been improved in recent decades, the 5-year survival rate has remained very low. Insights into the anticancer function of small-molecule anticancer compounds have opened our visual field about cancer therapy. α-Solanine has been well studied for its antitumor properties, but its effect in lung cancer and associated molecular mechanisms have not yet been evaluated. To explore the anticancer function of α-solanine, we performed an MTT assay, Transwell arrays, colony-forming survival assay, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and dual luciferase reporter assays in A549 and H1299 cells. We found that α-solanine not only inhibited cell migration and invasion ability but also enhanced the chemosensitivity and radiosensitivity of A549 and H1299 cells. Moreover, we discovered that α-solanine could affect the expression of miR-138 and focal adhesion kinase (FAK), both of which were also found to affect the chemosensitivity and radiosensitivity of A549 and H1299 cells. In conclusion, α-solanine could affect miR-138 and FAK expression to restrict cell migration and invasion and enhance the chemosensitivity and radiosensitivity of A549 and H1299 cells. The α-solanine/miR-138/FAK cascade can probably be a potential therapy target against lung adenocarcinoma.
Assuntos
Adenocarcinoma/genética , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Solanina/farmacologia , Regiões 3' não Traduzidas , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Antineoplásicos Fitogênicos/química , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Interferência de RNA , Tolerância a Radiação/efeitos dos fármacos , Solanina/químicaRESUMO
The present study has found that dried potato samples yielded significantly higher levels of steroidal alkaloids such as α-solanine and α-chaconine than the corresponding fresh samples, as determined by the UPLC-MS/MS technique. Among the drying techniques used, air drying had the highest effect on steroidal alkaloid contents, followed by freeze drying and vacuum oven drying. There was no significant difference between the freeze dried and vacuum oven dried samples in their α-chaconine contents. However, freeze dried potato shoots and berries had significantly higher α-solanine contents (825 µg/g dry weight (DW) in shoots and 2453 µg/g DW in berries) than the vacuum oven dried ones (325 µg/g dry weight (DW) in shoots and 2080 µg/g DW in berries). The kinetics of steroidal alkaloid contents of potato shoots during air drying were monitored over a period of 21 days. Both α-solanine and α-chaconine content increased to their maximum values, 875 µg/g DW and 3385 µg/g DW, respectively, after 7 days of drying. The steroidal alkaloid contents of the shoots decreased significantly at day 9, and then remained unchanged until day 21. In line with the potato shoots, air dried potato tuber peels also had higher steroidal alkaloid content than the freeze dried and vacuum oven dried samples. However, a significant decrease of steroidal alkaloid content was observed in air dried potato berries, possibly due to degradation during slicing of the whole berries prior to air drying. Remarkable variation in steroidal alkaloid contents among different tissue types of potato plants was observed with the potato flowers having the highest content.
Assuntos
Alcaloides/isolamento & purificação , Fitosteróis/isolamento & purificação , Solanina/análogos & derivados , Alcaloides/química , Cromatografia Líquida de Alta Pressão , Liofilização , Frutas/química , Fitosteróis/química , Brotos de Planta/química , Solanina/química , Solanina/isolamento & purificação , Solanum tuberosum/química , Espectrometria de Massas em TandemRESUMO
This report presents evidence that the following Solanum steroids: solasodine, diosgenin and solanine interact with human erythrocytes and molecular models of their membranes as follows: a) X-ray diffraction studies showed that the compounds at low molar ratios (0.1-10.0mol%) induced increasing structural perturbation to dimyristoylphosphatidylcholine bilayers and to a considerable lower extent to those of dimyristoylphosphatidylethanolamine; b) differential scanning calorimetry data showed that the compounds were able to alter the cooperativity of dimyristoylphosphatidylcholine, dimyristoylphosphatidylethanolamine and dimyristoylphosphatidylserine phase transitions in a concentration-dependent manner; c) in the presence of steroids, the fluorescence of Merocyanine 540 incorporated to the membranes decreased suggesting a fluidization of the lipid system; d) scanning electron microscopy observations showed that all steroids altered the normal shape of human erythrocytes inducing mainly echinocytosis, characterized by the formation of blebs in their surfaces, an indication that their molecules are located into the outer monolayer of the erythrocyte membrane.
Assuntos
Diosgenina/química , Membrana Eritrocítica/química , Bicamadas Lipídicas/química , Alcaloides de Solanáceas/química , Solanina/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Diosgenina/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Microscopia Eletrônica de Varredura , Transição de Fase/efeitos dos fármacos , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Pirimidinonas/química , Espalhamento a Baixo Ângulo , Alcaloides de Solanáceas/farmacologia , Solanina/farmacologia , Difração de Raios XRESUMO
AIM: In various experimental animal studies, it has been proven that solanine, a subtype of glycoalkaloids, is responsible for neural tube defects. However, there have not been any human studies yet in this area. Our aim is to investigate whether there are any connections between blood glycoalkaloid levels and anencephaly in humans. METHODS: Blood and amniotic fluid samples were taken from patients diagnosed with fetal anencephaly during pregnancy. The samples from patients with normal pregnancies were taken as well and was compared to the patients with fetal anencephaly during pregnancy. We searched the levels of three glycoalkaloids: solanine, chaconine and solamargine in the collected samples. RESULTS: Solanine, which is one of the glycoalkaloids, could not be detected in both serum and amniotic fluid in the anencephaly as well as the control groups. However, alpha-solamargine levels were observed to be significantly higher in the blood and amniotic fluid samples of the control group than in the study group (p = 0.04). Alpha-chaconine levels were also significantly higher in the control group (p < 0.001) as well. CONCLUSION: Based on our tests, we can conclude that no connections were found between blood solanine levels and anencephaly during pregnancy. Alpha-chaconine and alpha-solamargine levels were observed to be higher in blood and amniotic fluid in pregnancies without anencephaly. The relationship between glycoalkaloids and congenital anomalies needs to be further investigated in tissues other than blood.
Assuntos
Líquido Amniótico , Anencefalia , Humanos , Feminino , Anencefalia/sangue , Gravidez , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Adulto , Solanina/sangue , Estudos de Casos e Controles , Alcaloides de Solanáceas/sangueRESUMO
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
RESUMO
Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 µM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers.
RESUMO
Alzheimer's disease (AD) is a brain illness that causes cognitive impairment in the elderly, especially females, as a result of genetics, hormones, and life experiences. It becomes more severe with age and is associated with cardiovascular disease, hypertension, and diabetes. Beta-amyloid plaques and hyper phosphorylated Tau protein buildup are common clinical findings. Misfiling of amyloid precursor protein (APP) and Amyloid beta peptide (Aß) proteins contributes to Alzheimer's disease. Enzyme Acetylcholinesterase enzyme interacts with amyloid-beta, enhancing its accumulation in insoluble plaques, leading to successful treatment for Alzheimer's disease primarily based on lowering this enzyme. Treatments include using the Rivastigmine for mild, moderate, or severe Alzheimer's disease, which inhibits acetylcholinesterase, but may cause side effects; Solanine derivatives, nightshade toxin, it is cholinesterase inhibitory, may mitigate Alzheimer's illness is progressing. In this research utilized a molecular docking program, which is a computer's computational ability to determine the optimal position for a specific compound to bind to a protein or target, forming a target-ligand complex and displaying biological activity and aiding in the development of effective anti-AD treatments and understanding AD pathological mechanisms. The study examined complexes of 3LII (Acetylcholinesterase receptor) in the A and B chain with Solanine and Rivastigmine derivatives, using an in-silico approach. PyRx default sorter was used to improve docking accuracy. Four compounds were selected based on their higher binding affinities in chain A and B. The results showed that Solanine derivatives (alpha-Solanine, Beta1-Solanine and Beta2-Solanine) have higher binding strength (-9.0,-9.3 and -8.6) than Rivastigmine (-7.2) in chain A, and also the binding strength was high for the Solanine derivatives (alpha-Solanine, Beta1-Solanine, and Beta2-Solanine) (-9.0,-8.8 and -8.9) is higher than Rivastigmine (-6.0) in the chain B. Solanine derivatives showed higher binding strength with acetylcholinesterase, potentially for to reduce the progression of the disease.
RESUMO
Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.
Assuntos
Proteção de Cultivos , Frutas , Solanum tuberosum , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Frutas/química , Proteção de Cultivos/métodos , Extratos Vegetais/química , Tubérculos/química , Tubérculos/metabolismo , Animais , HumanosRESUMO
Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of Tenebrio molitor using LCâMS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 µL of 10-5 M SOL or CHA solution, which corresponds to a dosage range of 0.12-0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.
Assuntos
Hemolinfa , Larva , Tenebrio , Animais , Tenebrio/metabolismo , Larva/metabolismo , Hemolinfa/metabolismo , Hemolinfa/química , Alcaloides/metabolismo , Alcaloides/análise , Cromatografia LíquidaRESUMO
OBJECTIVES: Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide. Solanine is a phytochemical extracted from traditional Chinese medicine with widely reported anticancer effects. Here, we investigated the potential role of solanine in regulating ferroptosis in CRC cells and scrutinized the molecular mechanism. METHODS: Cell growth and cytotoxicity were examined using CCK-8 proliferation assay and lactate dehydrogenase assay. Oxidative stress was determined by measuring glutathione (GSH), malondialdehyde, and reactive oxygen species (ROS) levels. Subcellular changes in mitochondria were examined by transmission electron microscopy. Gene and protein expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein-protein interaction was determined by co-immunoprecipitation. KEY FINDINGS: Solanine arrested cell proliferation in CRC cells and induced typical ferroptotic changes. Solanine treatment promoted ROS production, lipid peroxidation, and cell membrane disruption, while the cellular level of antioxidant GSH was reduced upon solanine treatment. ALOX12B was identified as a molecular mediator of solanine to promote ferroptosis. Solanine treatment upregulated ALOX12B levels and silencing ALOX12B could suppress solanine-induced ferroptosis. Further, ADCY4 was found to physically associate with ALOX12B and maintain ALOX12B protein stability. Silencing ADCY4 destabilized ALOX12B and attenuated solanine-induced ferroptosis. CONCLUSIONS: Our data demonstrated the ferroptosis-inducing effect of solanine in CRC cells, and revealed ALOX12B/ADCY4 molecular axis as the ferroptosis mediator of solanine. Solanine may synergize with existing ferroptosis inducer as an anticancer strategy in CRC, which warrants further validation in animal experiments.
Assuntos
Neoplasias Colorretais , Ferroptose , Solanina , Animais , Espécies Reativas de Oxigênio , Membrana Celular , Glutationa , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genéticaRESUMO
α-solanine is a glycoalkaloid that is commonly found in nightshades (Solanum) and has a toxic effect on the human organism. Among other things, it is already known to inhibit tumor cell proliferation and induce apoptosis in tumor cell lines. Due to its potential as a tumor therapeutic, the current study investigated the effect of α-solanine on head and neck squamous cell carcinoma (HNSCC). In addition, genotoxic and antiangiogenic effects on human umbilical vein endothelial cells (HUVECs) were evaluated at subtoxic α-solanine concentrations. Cytotoxicity and apoptosis rates were measured in two human HNSCC cell lines (FaDu pharynx carcinoma cells and CAL-33 tongue carcinoma cells), as well as in HUVECs. MTT and Annexin V analyses were performed 24 h after α-solanine treatment at increasing doses up to 30 µM to determine cytotoxic concentrations. Furthermore, genotoxicity at subtoxic concentrations of 1, 2, 4 and 6 µM in HUVECs was analyzed using single-cell gel electrophoresis (comet assay). The antiangiogenic effect on HUVECs was evaluated in the capillary tube formation assay. The MTT assay indicated an induction of concentration-dependent viability loss in FaDu and CAL-33 cancer cell lines, whereas the Annexin V test revealed α-solanine-induced cell death predominantly independent from apoptosis. In HUVECs, the cytotoxic effect occurred at lower concentrations. No genotoxicity or inhibition of angiogenesis were detected at subtoxic doses in HUVECs. In summary, α-solanine had a cytotoxic effect on both malignant and non-malignant cells, but this was only observed at higher concentrations in malignant cells. In contrast to existing data in the literature, tumor cell apoptosis was less evident than necrosis. The lack of genotoxicity and antiangiogenic effects in the subtoxic range in benign cells are promising, as this is favorable for potential therapeutic applications. In conclusion, however, the cytotoxicity in non-malignant cells remains a severe hindrance for the application of α-solanine as a therapeutic tumor agent in humans.
RESUMO
The aim of this investigation was the preparative isolation of solanidine (aglycone of the two main potato glycoalkaloids: α-chaconine and α-solanine) from fresh Solanum tuberosum (cv. Pompadour) material by implementing a new preparation scheme using centrifugal partition chromatography (CPC). A setup for obtaining solanidine by hydrolysis of the glycoalkaloids found in the skin and sprouts of S. tuberosum was first developed. Then its isolation was carried out by the development of CPC conditions: the solvent system used for separation was ethyl acetate/butanol/water in the ratio 42.5:7.5:50 v/v/v, 0.6 g of crude extract were separated with a 8 mL/min flow rate of mobile phase while rotating at 2500 rpm. A run yielded 98 mg of solanidine (86.7% recovery from the crude extract) in a one-step separation. The purity of the isolated solanidine was over 98%. Thus, CPC has proven to be the method of choice to get solanidine of very high purity from S. tuberosum biomass in large quantities.
Assuntos
Cromatografia/métodos , Extratos Vegetais/isolamento & purificação , Solanina/isolamento & purificação , Solanum tuberosum/química , Cromatografia/instrumentaçãoRESUMO
Dickeya and Pectobacterium species are the causal agents of blackleg and soft rot diseases. This article explores the possibility of using the glycoalkaloids (GAs) naturally produced by the potato tuber after the greening process as a blackleg control method. We first tested the effect of GAs extracted from four potato cultivars on the growth and viability of one Dickeya and one Pectobacterium strain in growth media. Then, four years of field experiments were performed in which the incidence of blackleg was assessed in plants grown from the seed tubers of cv. Agria that were subjected to various greening treatments. In the growth media, all GAs isolated from the four cultivars appeared to be bacteriostatic and bactericidal against both bacteria strains. The inhibitory effect varied among GAs from different cultivars. Except for a one-year field trial, the blackleg incidence was lower in plants grown from green seed tubers without the yield being affected. The blackleg control was marginal, probably due to the low production of GAs by the tubers of cv. Agria after greening. Based on our findings, seed tuber greening has a good potential for blackleg control after the identification of varieties that present optimal GA composition after greening.
RESUMO
Purpose: Solanine is the main component of the plant Solanum, which has been shown to provide growth-limiting activities in a variety of human cancers. However, little is known about its function in gastric cancer (GC). Methods: We investigated the effect of solanine on GC in vivo and in vitro. The inhibition rate of solanine on the tumor was observed by constructing a subcutaneous tumor in nude mice. Morphological changes were analyzed with H&E staining. The expression of ATF4 was detected by IF analysis. MTT assays, EdU staining, and colony formation assays were used to detect the inhibition rate of solanine on GC cells. Matrigel transwells were used to detect the invasion of GC cells. Cell migration was measured using the wound healing assay. The flow cytometric analysis was used to monitor changes in the cell cycle and cell apoptosis. Western blotting was used to detect major proteins in cells and tumors. Results: Solanine suppressed gastric tumorigenesis. Solanine also inhibited the proliferation, invasion and mitigation of GC cells, and induced cell cycle arrest and apoptosis in vitro. Moreover, the growth-limiting activities of solanine in gastric cancer were related to the suppression of the AAMDC/MYC/ATF4/Sesn2 pathway-mediated autophagy. Overexpression of AAMDC reversed the inhibitory effect of solanine on autophagy and gastric cancer. Conclusion: In summary, our findings indicate that solanine confers growth-limiting activities by deactivating the AAMDC-regulated autophagy in gastric cancer.