Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.291
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
2.
Cell ; 187(7): 1745-1761.e19, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518772

RESUMO

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.


Assuntos
Neurônios , Propriocepção , Animais , Propriocepção/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Movimento/fisiologia , Primatas , Redes Neurais de Computação
3.
Genes Dev ; 34(9-10): 621-636, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241803

RESUMO

Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal Although these mutants survive postnatally, at ∼3-5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.


Assuntos
Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Prurido/genética , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas , Elementos Facilitadores Genéticos/genética , Camundongos , Mutação , Neurônios/citologia , Medula Espinal , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(6): e2316294121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285945

RESUMO

Recent studies have indicated somatosensory cortex involvement in motor learning and retention. However, the nature of its contribution is unknown. One possibility is that the somatosensory cortex is transiently engaged during movement. Alternatively, there may be durable learning-related changes which would indicate sensory participation in the encoding of learned movements. These possibilities are dissociated by disrupting the somatosensory cortex following learning, thus targeting learning-related changes which may have occurred. If changes to the somatosensory cortex contribute to retention, which, in effect, means aspects of newly learned movements are encoded there, disruption of this area once learning is complete should lead to an impairment. Participants were trained to make movements while receiving rotated visual feedback. The primary motor cortex (M1) and the primary somatosensory cortex (S1) were targeted for continuous theta-burst stimulation, while stimulation over the occipital cortex served as a control. Retention was assessed using active movement reproduction, or recognition testing, which involved passive movements produced by a robot. Disruption of the somatosensory cortex resulted in impaired motor memory in both tests. Suppression of the motor cortex had no impact on retention as indicated by comparable retention levels in control and motor cortex conditions. The effects were learning specific. When stimulation was applied to S1 following training with unrotated feedback, movement direction, the main dependent variable, was unaltered. Thus, the somatosensory cortex is part of a circuit that contributes to retention, consistent with the idea that aspects of newly learned movements, possibly learning-updated sensory states (new sensory targets) which serve to guide movement, may be encoded there.


Assuntos
Aprendizagem , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/fisiologia , Aprendizagem/fisiologia , Movimento/fisiologia , Retroalimentação Sensorial , Lobo Occipital , Transtornos da Memória
5.
Proc Natl Acad Sci U S A ; 121(29): e2316765121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990946

RESUMO

How does the brain simultaneously process signals that bring complementary information, like raw sensory signals and their transformed counterparts, without any disruptive interference? Contemporary research underscores the brain's adeptness in using decorrelated responses to reduce such interference. Both neurophysiological findings and artificial neural networks support the notion of orthogonal representation for signal differentiation and parallel processing. Yet, where, and how raw sensory signals are transformed into more abstract representations remains unclear. Using a temporal pattern discrimination task in trained monkeys, we revealed that the second somatosensory cortex (S2) efficiently segregates faithful and transformed neural responses into orthogonal subspaces. Importantly, S2 population encoding for transformed signals, but not for faithful ones, disappeared during a nondemanding version of this task, which suggests that signal transformation and their decoding from downstream areas are only active on-demand. A mechanistic computation model points to gain modulation as a possible biological mechanism for the observed context-dependent computation. Furthermore, individual neural activities that underlie the orthogonal population representations exhibited a continuum of responses, with no well-determined clusters. These findings advocate that the brain, while employing a continuum of heterogeneous neural responses, splits population signals into orthogonal subspaces in a context-dependent fashion to enhance robustness, performance, and improve coding efficiency.


Assuntos
Macaca mulatta , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Modelos Neurológicos , Masculino
6.
Annu Rev Physiol ; 85: 1-24, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36400128

RESUMO

The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.


Assuntos
Biônica , Propriocepção , Humanos , Propriocepção/fisiologia , Retroalimentação Sensorial/fisiologia , Células Receptoras Sensoriais/fisiologia
7.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920224

RESUMO

Synaptic connections between neurons are often formed in precise subcellular regions of dendritic arbors with implications for information processing within neurons. Cell-cell interactions are widely important for circuit wiring; however, their role in subcellular specificity is not well understood. We studied the role of axon-axon interactions in precise targeting and subcellular wiring of Drosophila somatosensory circuitry. Axons of nociceptive and gentle touch neurons terminate in adjacent, non-overlapping layers in the central nervous system (CNS). Nociceptor and touch receptor axons synapse onto distinct dendritic regions of a second-order interneuron, the dendrites of which span these layers, forming touch-specific and nociceptive-specific connectivity. We found that nociceptor ablation elicited extension of touch receptor axons and presynapses into the nociceptor recipient region, supporting a role for axon-axon interactions in somatosensory wiring. Conversely, touch receptor ablation did not lead to expansion of nociceptor axons, consistent with unidirectional axon-axon interactions. Live imaging provided evidence for sequential arborization of nociceptive and touch neuron axons in the CNS. We propose that axon-axon interactions and modality-specific timing of axon targeting play key roles in subcellular connection specificity of somatosensory circuitry.


Assuntos
Axônios , Proteínas de Drosophila , Animais , Axônios/fisiologia , Drosophila , Sinapses/fisiologia , Proteínas de Drosophila/genética , Células Receptoras Sensoriais , Dendritos/fisiologia
8.
Proc Natl Acad Sci U S A ; 120(11): e2222076120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877853

RESUMO

Neurons in the early stages of processing sensory information suffer transneuronal atrophy when deprived of their activating inputs. For over 40 y, members of our laboratory have studied the reorganization of the somatosensory cortex during and after recovering from different types of sensory loss. Here, we took advantage of the preserved histological material from these studies of the cortical effects of sensory loss to evaluate the histological consequences in the cuneate nucleus of the lower brainstem and the adjoining spinal cord. The neurons in the cuneate nucleus are activated by touch on the hand and arm, and relay this activation to the contralateral thalamus, and from the thalamus to the primary somatosensory cortex. Neurons deprived of activating inputs tend to shrink and sometimes die. We considered the effects of differences in species, type and extent of sensory loss, recovery time after injury, and age at the time of injury on the histology of the cuneate nucleus. The results indicate that all injuries that deprived part or all of the cuneate nucleus of sensory activation result in some atrophy of neurons as reflected by a decrease in nucleus size. The extent of the atrophy is greater with greater sensory loss and with longer recovery times. Based on supporting research, atrophy appears to involve a reduction in neuron size and neuropil, with little or no neuron loss. Thus, the potential exists for restoring the hand to cortex pathway with brain-machine interfaces, for bionic prosthetics, or biologically with hand replacement surgery.


Assuntos
Tronco Encefálico , Primatas , Animais , Mãos , Extremidade Superior , Atrofia
9.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37989592

RESUMO

Sensory systems are shaped in postnatal life by the refinement of synaptic connectivity. In the dorsal horn of the spinal cord, somatosensory circuits undergo postnatal activity-dependent reorganization, including the refinement of primary afferent A-fiber terminals from superficial to deeper spinal dorsal horn laminae which is accompanied by decreases in cutaneous sensitivity. Here, we show in the mouse that microglia, the resident immune cells in the CNS, phagocytose A-fiber terminals in superficial laminae in the first weeks of life. Genetic perturbation of microglial engulfment during the initial postnatal period in either sex prevents the normal process of A-fiber refinement and elimination, resulting in an altered sensitivity of dorsal horn cells to dynamic tactile cutaneous stimulation, and behavioral hypersensitivity to dynamic touch. Thus, functional microglia are necessary for the normal postnatal development of dorsal horn sensory circuits. In the absence of microglial engulfment, superfluous A-fiber projections remain in the dorsal horn, and the balance of sensory connectivity is disrupted, leading to lifelong hypersensitivity to dynamic touch.


Assuntos
Percepção do Tato , Tato , Animais , Camundongos , Microglia , Corno Dorsal da Medula Espinal , Fibras Nervosas Mielinizadas/fisiologia , Medula Espinal/fisiologia , Células do Corno Posterior
10.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050100

RESUMO

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.


Assuntos
Amputados , Mapeamento Encefálico , Masculino , Humanos , Feminino , Mapeamento Encefálico/métodos , Mãos , Amputação Cirúrgica , Análise e Desempenho de Tarefas , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional
11.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050130

RESUMO

Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.


Assuntos
Neurônios , Córtex Somatossensorial , Camundongos , Masculino , Animais , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Axônios , Potenciais da Membrana , Movimento , Vibrissas/fisiologia
12.
J Neurosci ; 44(3)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233220

RESUMO

Spinal cord injury (SCI) is devastating, with limited treatment options and variable outcomes. Most in vivo SCI research has focused on the acute and early post-injury periods, and the promotion of axonal growth, so little is understood about the clinically stable chronic state, axonal growth over time, and what plasticity endures. Here, we followed animals into the chronic phase following SCI, to address this gap. Male macaques received targeted deafferentation, affecting three digits of one hand, and were divided into short (4-6 months) or long-term (11-12 months) groups, based on post-injury survival times. Monkeys were assessed behaviorally, where possible, and all exhibited an initial post-injury deficit in manual dexterity, with gradual functional recovery over 2 months. We previously reported extensive sprouting of somatosensory corticospinal (S1 CST) fibers in the dorsal horn in the first five post-injury months. Here, we show that by 1 year, the S1 CST sprouting is pruned, with the terminal territory resembling control animals. This was reflected in the number of putatively "functional" synapses observed, which increased over the first 4-5 months, and then returned to baseline by 1 year. Microglia density also increased in the affected dorsal horn at 4-6 months and then decreased, but did not return to baseline by 1 year, suggesting refinement continues beyond this time. Overall, there is a long period of reorganization and consolidation of adaptive circuitry in the dorsal horn, extending well beyond the initial behavioral recovery. This provides a potential window to target therapeutic opportunities during the chronic phase.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Masculino , Corno Dorsal da Medula Espinal , Mãos , Primatas , Medula Espinal , Tratos Piramidais
13.
J Neurosci ; 44(38)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39164107

RESUMO

Millisecond-scale temporal spiking patterns encode sensory information in the periphery, but their role in the neocortex remains controversial. The sense of touch provides a window into temporal coding because tactile neurons often exhibit precise, repeatable, and informative temporal spiking patterns. In the somatosensory cortex (S1), responses to skin vibrations exhibit phase locking that faithfully carries information about vibratory frequency. However, the respective roles of spike timing and rate in frequency coding are confounded because vibratory frequency shapes both the timing and rates of responses. To disentangle the contributions of these two neural features, we measured S1 responses as rhesus macaques performed frequency discrimination tasks in which differences in frequency were accompanied by orthogonal variations in amplitude. We assessed the degree to which the strength and timing of responses could account for animal performance. First, we showed that animals can discriminate frequency, but their performance is biased by amplitude variations. Second, rate-based representations of frequency are susceptible to changes in amplitude but in ways that are inconsistent with the animals' behavioral biases, calling into question a rate-based neural code for frequency. In contrast, timing-based representations are highly informative about frequency but impervious to changes in amplitude, which is also inconsistent with the animals' behavior. We account for the animals' behavior with a model wherein frequency coding relies on a temporal code, but frequency judgments are biased by perceived magnitude. We conclude that information about vibratory frequency is not encoded in S1 firing rates but primarily in temporal patterning on millisecond timescales.


Assuntos
Macaca mulatta , Córtex Somatossensorial , Vibração , Animais , Córtex Somatossensorial/fisiologia , Masculino , Potenciais de Ação/fisiologia , Fatores de Tempo , Estimulação Física , Tato/fisiologia , Discriminação Psicológica/fisiologia , Percepção do Tato/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Feminino
14.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38871461

RESUMO

Studies using magnetic brain stimulation indicate the involvement of somatosensory regions in the acquisition and retention of newly learned movements. Recent work found an impairment in motor memory when retention was tested shortly after the application of continuous theta-burst stimulation (cTBS) to the primary somatosensory cortex, compared with stimulation of the primary motor cortex or a control zone. This finding that the somatosensory cortex is involved in motor memory retention whereas the motor cortex is not, if confirmed, could alter our understanding of human motor learning. It would indicate that plasticity in sensory systems underlies newly learned movements, which is different than the commonly held view that adaptation learning involves updates to a motor controller. Here we test this idea. Participants were trained in a visuomotor adaptation task, with visual feedback gradually shifted. Following adaptation, cTBS was applied either to M1, S1, or an occipital cortex control area. Participants were tested for retention 24 h later. It was observed that S1 stimulation led to reduced retention of prior learning, compared with stimulation of M1 or the control area (with no significant difference between M1 and control). In a further control, cTBS was applied to S1 following training with unrotated feedback, in which no learning occurred. This had no effect on movement in the retention test indicating the effects of S1 stimulation on movement are learning specific. The findings are consistent with the S1 participation in the encoding of learning-related changes to movements and in the retention of human motor memory.


Assuntos
Aprendizagem , Córtex Somatossensorial , Estimulação Magnética Transcraniana , Humanos , Córtex Somatossensorial/fisiologia , Masculino , Feminino , Adulto , Estimulação Magnética Transcraniana/métodos , Aprendizagem/fisiologia , Adulto Jovem , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Consolidação da Memória/fisiologia , Retroalimentação Sensorial/fisiologia
15.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769008

RESUMO

Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.


Assuntos
Eletroencefalografia , Sono REM , Córtex Somatossensorial , Tálamo , Animais , Camundongos , Sono REM/fisiologia , Córtex Somatossensorial/fisiologia , Masculino , Tálamo/fisiologia , Camundongos Endogâmicos C57BL , Vibrissas/fisiologia , Vibrissas/inervação , Vigília/fisiologia , Vias Neurais/fisiologia
16.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38508711

RESUMO

In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.


Assuntos
Eletroencefalografia , Potenciais Somatossensoriais Evocados , Potenciais Evocados Visuais , Ilusões , Percepção Visual , Humanos , Masculino , Feminino , Adulto , Percepção Visual/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Adulto Jovem , Ilusões/fisiologia , Potenciais Evocados Visuais/fisiologia , Percepção do Tato/fisiologia , Estimulação Luminosa/métodos , Conflito Psicológico , Córtex Somatossensorial/fisiologia , Imagem Corporal
17.
Dev Biol ; 515: 178-185, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39021074

RESUMO

The somatosensory system detects peripheral stimuli that are translated into behaviors necessary for survival. Fishes and amphibians possess two somatosensory systems in the trunk: the primary somatosensory system, formed by the Rohon-Beard neurons, and the secondary somatosensory system, formed by the neural crest cell-derived neurons of the Dorsal Root Ganglia. Rohon-Beard neurons have been characterized as a transient population that mostly disappears during the first days of life and is functionally replaced by the Dorsal Root Ganglia. Here, I follow Rohon-Beard neurons in vivo and show that the entire repertoire remains present in zebrafish from 1-day post-fertilization until the juvenile stage, 15-days post-fertilization. These data indicate that zebrafish retain two complete somatosensory systems until at least a developmental stage when the animals display complex behavioral repertoires.


Assuntos
Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Gânglios Espinais/embriologia , Neurônios/fisiologia , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia
18.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129199

RESUMO

Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.


Assuntos
Nadadeiras de Animais/fisiologia , Axônios/metabolismo , Endotélio/metabolismo , Organogênese/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Nadadeiras de Animais/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Endotélio/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição Sp7/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
EMBO Rep ; 24(2): e54313, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524339

RESUMO

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.


Assuntos
Prurido , RNA Longo não Codificante , Células Receptoras Sensoriais , Animais , Camundongos , Histamina , Prurido/genética , RNA Longo não Codificante/genética , Sensação
20.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110412

RESUMO

New tasks are often learned in stages with each stage reflecting a different learning challenge. Accordingly, each learning stage is likely mediated by distinct neuronal processes. And yet, most rodent studies of the neuronal correlates of goal-directed learning focus on individual outcome measures and individual brain regions. Here, we longitudinally studied mice from naïve to expert performance in a head-fixed, operant conditioning whisker discrimination task. In addition to tracking the primary behavioral outcome of stimulus discrimination, we tracked and compared an array of object-based and temporal-based behavioral measures. These behavioral analyses identify multiple, partially overlapping learning stages in this task, consistent with initial response implementation, early stimulus-response generalization, and late response inhibition. To begin to understand the neuronal foundations of these learning processes, we performed widefield Ca2+ imaging of dorsal neocortex throughout learning and correlated behavioral measures with neuronal activity. We found distinct and widespread correlations between neocortical activation patterns and various behavioral measures. For example, improvements in sensory discrimination correlated with target stimulus evoked activations of response-related cortices along with distractor stimulus evoked global cortical suppression. Our study reveals multidimensional learning for a simple goal-directed learning task and generates hypotheses for the neuronal modulations underlying these various learning processes.


Assuntos
Condicionamento Operante , Objetivos , Neocórtex , Vibrissas , Animais , Neocórtex/fisiologia , Condicionamento Operante/fisiologia , Vibrissas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Aprendizagem por Discriminação/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA