Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892361

RESUMO

Sophora alopecuroides has important uses in medicine, wind breaking, and sand fixation. The CHY-zinc-finger and RING-finger (CHYR) proteins are crucial for plant growth, development, and environmental adaptation; however, genetic data regarding the CHYR family remain scarce. We aimed to investigate the CHYR gene family in S. alopecuroides and its response to abiotic stress, and identified 18 new SaCHYR genes from S. alopecuroides whole-genome data, categorized into 3 subclasses through a phylogenetic analysis. Gene structure, protein domains, and conserved motifs analyses revealed an exon-intron structure and conserved domain similarities. A chromosome localization analysis showed distribution across 12 chromosomes. A promoter analysis revealed abiotic stress-, light-, and hormone-responsive elements. An RNA-sequencing expression pattern analysis revealed positive responses of SaCHYR genes to salt, alkali, and drought stress. SaCHYR4 overexpression considerably enhanced alkali and drought tolerance in Arabidopsis thaliana. These findings shed light on SaCHYR's function and the resistance mechanisms of S. alopecuroides, presenting new genetic resources for crop resistance breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Sophora , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sophora/genética , Arabidopsis/genética , Genoma de Planta , Secas , Cromossomos de Plantas/genética
2.
Phytother Res ; 37(2): 592-610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36180975

RESUMO

Sorafenib (SF), a multi-kinase inhibitor, is the first FDA-approved systemic chemotherapy drug for advanced hepatocellular carcinoma (HCC). However, its clinical application is limited by severe toxicity and side effects associated with high applied doses. Sophora alopecuroides L. is traditionally used as Chinese herbal medicine for treating gastrointestinal diseases, bacillary dysentery, viral hepatitis, and other diseases, and exerts an important role in anti-tumor. Hence, we investigated the synergistic actions of seventeen flavonoids from this herb combined with SF against HCC cell lines and their primary mechanism. In the experiment, most compounds were found to prominently enhance the inhibitory effects of SF on HCC cells than their alone treatment. Among them, three compounds leachianone A (1), sophoraflavanone G (3), and trifolirhizin (17) exhibited significantly synergistic anticancer activities against MHCC97H cells at low concentration with IC50 of SF reduced by 5.8-fold, 3.6-fold, and 3.5-fold corresponding their CI values of 0.49, 0.66, and 0.46 respectively. Importantly, compounds 3 or 17 combined with SF could synergistically induce MHCC97H cells apoptosis via the endogenously mitochondrial-mediated apoptotic pathway, involving higher Bax/Bcl-2 expressions with the activation of caspase-9 and -3, and arrest the cell cycle in G1 phases. Strikingly, this synergistic effect was also closely related to the co-suppression of ERK and AKT signaling pathways. Furthermore, compound 3 significantly enhanced the suppression of SF on tumor growth in the HepG2 xenograft model, with a 79.3% inhibition ratio at high concentration, without systemic toxicity, compared to either agent alone. These results demonstrate that the combination treatment of flavonoid 3 and SF at low doses exert synergistic anticancer effects on HCC cells in vitro and in vivo.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sophora , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Compostos de Fenilureia/farmacologia
3.
J Sci Food Agric ; 103(1): 164-175, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35837792

RESUMO

BACKGROUND: Sophora alopecuroides L. is a leguminous plant commonly found in northwest China. In Xinjiang, the fresh herb of S. alopecuroides is often applied as a green fertilizer to the rhizosphere of melon (Cucumis melo) plants at the end of their flowering period, to improve the taste of the fruits. However, the effects of S. alopecuroides-based fertilizers on the microbial community structure of soil and crop-root systems are unclear. In order to study the sweetening mechanism of the S. alopecuroides organic fertilizer, three different varieties of melon were selected. The untreated plants were used as the control (CK) group, and the plants treated with S. alopecuroides-based organic fertilizer were selected as the treatment (T) group. The physical and chemical properties, enzyme activities and microbial community structure of the rhizosphere samples were also determined, and a correlation analysis with the fruit sweetness index was conducted. RESULTS: Sugar content of group T was at least 40% higher than that of group CK. The increase in fruit sugar content positively correlated with the increase in the abundance of beneficial microorganisms, including Pseudomonas, Bacillus, Mycobacterium, Burkholderia, Streptomyces, Acinetobacter, Proteobacteria, Lysobacter, Actinomycetes, Penicillium and Aspergillus. CONCLUSION: Sophora alopecuroides organic fertilizer could alter the composition and function of bacterial and fungal communities and promote the growth of beneficial bacteria in the melon plant rhizosphere. Further, it could increase the content of soluble solids and sugar in the fruits to achieve a sweetening effect. This fertilizer can be applied as a fruit sweetener in melon cultivation, improving the sugar content of the fruit and consequently the sweetness. © 2022 Society of Chemical Industry.


Assuntos
Cucurbitaceae , Microbiota , Sophora , Fertilizantes/análise , Rizosfera , Frutas/química , Microbiologia do Solo , Solo/química , Bactérias/genética , Açúcares
4.
Bioorg Med Chem ; 61: 116723, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396127

RESUMO

Alopecurosines A and B (CMs 1 and 2, respectively) are two novel cytisine-type alkaloid dimers first isolated from the aerial parts of Sophora alopecuroides L. CMs 1 and 2 are new dimeric alkaloids whose piperidine matrine ring is cleaved and connected via the N'-1 bond. Their chemical structures have been confirmed by IR, UV, HR-ESI-MS, and NMR. Preliminary screening shows that they have topoisomerase I (Topo I)-based anti-tumor activity. Their Topo I inhibitory activities and mechanism have been evaluated by agarose gel electrophoresis assay and a molecular docking study. The results show that the inhibition rate of CM 1 is 82.26% at 1 mM concentration and that it exhibits significantly Topo I inhibitory activity. Further research has illustrated that CMs 1 and 2 exert inhibitory activity by stabilising the Topo I-DNA cleavage complex, implying that they have the potential to be developed as novel Topo I inhibitors.


Assuntos
Alcaloides , Sophora , Alcaloides/química , Azocinas , Simulação de Acoplamento Molecular , Quinolizinas , Sementes/química , Sophora/química
5.
Bioorg Med Chem ; 64: 116724, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468537

RESUMO

Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn (SAL), have been proven to be pharmacologically active in a variety of cancers including non-small cell lung cancer (NSCLC). However, whether these alkaloids have substantial benefits in combination with immune checkpoint blockade (ICB) for the treatment of NSCLC is unknown. Here, we explore the potential of these alkaloids in combination with ICB therapy based on a systems pharmacology and bioinformatics approach. We found that 37 alkaloids in SAL have highly similar characteristics in the molecular skeleton, pharmacological properties, and targets. The expression of targets of these alkaloids are significantly correlated with the infiltration level of tumor infiltrating lymphocytes and the expression levels of multiple immune checkpoints in NSCLC. They share similar molecular mechanisms in antitumor immunity. Sophocarpine (Sop) is one of the most representative constituents of these alkaloids. We demonstrated that the Sop promotes PD-L1 expression to improve the effects of PD-L1 blockade treatment via the ADORA1-ATF3 axis. In conclusion, our study identified these alkaloids as promising candidates for the treatment of NSCLC, either alone or in combination with ICB, with potential value for drug development and may provide a promising strategy for improving the survival of NSCLC patients.


Assuntos
Alcaloides , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sophora , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Farmacologia em Rede
6.
Planta ; 254(4): 77, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34535825

RESUMO

MAIN CONCLUSION: Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.


Assuntos
Tolerância ao Sal , Sophora , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Sophora/genética , Sophora/metabolismo , Estresse Fisiológico
7.
Bioorg Med Chem Lett ; 35: 127775, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412152

RESUMO

Seventeen flavonoids (1-17) were isolated from Sophora alopecuroides L.. Compounds 1 and 2 were new compounds, and compounds 5, 8, 11, 12, and 17 were isolated from S. alopecuroides for the first time. The sources of compounds 1 and 2 were determined from the seeds of S. alopecuroides by UPLC-QE-Orbitrap-MS, and compounds 1, 2, 7, 13, 14, 15, 16, and 17 were proven to improve the insulin resistance of C2C12 myotubes and significantly increase glucose consumption levels. Among them, compounds 1, 2, 13, 14, 16, and 17 could bind to protein tyrosine phosphatase 1B (PTP1B), thereby significantly inhibiting the enzyme activity of PTP1B. Compound 2 had the strongest inhibitory effect, with an inhibition rate of 95.22% at 0.1 µg mL-1.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Palmitatos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sophora/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Resistência à Insulina , Camundongos , Estrutura Molecular , Palmitatos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Chem ; 110: 104781, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677246

RESUMO

Forty-three quinolizidine alkaloids (1-43), including twelve new matrine-type ones, sophalodes A-L (1-7, 17, 19 and 28-30), were isolated from the seeds of Sophora alopecuroides. Structurally, compounds 1-4 were the first examples of C-11 oxidized matrine-type alkaloids from Sophora plants. The structures and absolute configurations of new compounds were elucidated by extensive spectroscopic techniques, X-ray diffraction analysis, and quantum chemical calculation. In addition, the NMR data and absolute configuration of compound 18 was reported for the first time. All the isolates were evaluated for their inhibition on nitric oxide production induced by lipopolysaccharide in RAW 264.7 macrophages, among them, compounds 29, 38 and 42 exhibited the most significant activity with IC50 values of 29.19, 25.86 and 33.30 µM, respectively. Further research about new compound 29 showed that it also suppressed the protein levels of iNOS and COX-2, which revealed its anti-inflammatory potential. Moreover, additional research showed that compound 16 exhibited marginal cytotoxicity against HeLa cell lines, with an IC50 value of 24.27 µM.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Simulação de Acoplamento Molecular , Quinolizidinas/farmacologia , Sophora/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Quinolizidinas/química , Quinolizidinas/isolamento & purificação , Células RAW 264.7 , Relação Estrutura-Atividade
9.
Bioorg Chem ; 116: 105337, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34521046

RESUMO

A phytochemical investigation on the alkaloids from water-soluble part of Sophora alopecuroides led to obtain forty matrine-type alkaloids (1-40) including eighteen new ones (1-18), which covers almost all positions of the oxygen substitution in matrine-type structure. Notably, eight compounds (1-8) belong to rare bis-amide matrine-type alkaloid. The new structures were determined based on extensive spectroscopic data, electronic circular dichroism (ECD) calculations, and six instances, verified by X-ray crystallography. Most of isolates showed anti-neuroinflammatory activities based on the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BV2 microglia cells. Especially, compound 39 can suppress those two mediator secretions in a dose-dependent manner with IC50 values of 21.6 ± 0.5 and 16.7 ± 0.8 µM, respectively. Further mechanistic study revealed that 39 suppressed the phosphorylation of IκBα and p65 subunit to regulate the NF-κB signaling pathway.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Quinolizinas/farmacologia , Sophora/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quinolizinas/química , Quinolizinas/isolamento & purificação , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Água/química , Matrinas
10.
Chem Biodivers ; 18(4): e2001066, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656782

RESUMO

Three new matrine-type alkaloids, 8ß-hydroxyoxysophoridine (1), 9ß-hydroxysophoridine (2), 9ß-hydroxyisosophocarpine (3), together with one known analog, 11,12-dehydromatrine (4), were isolated from the seeds of Sophora alopecuroides L. The structures of new compounds were elucidated using extensive spectroscopic techniques including the experimental and calculated ECD data. The anti-inflammatory activities of all the isolates on NO production in RAW 264.7 cells stimulated by lipopolysaccharide were evaluated. Among them, 8ß-hydroxyoxysophoridine (1) showed a significant inhibitory effect with an IC50 value of 18.26 µM.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Sementes/química , Sophora/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
11.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673678

RESUMO

Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Fenilpropionatos/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Sophora/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Lignina/biossíntese , Proteínas de Plantas/genética , Sophora/genética , Sophora/crescimento & desenvolvimento , Estresse Fisiológico
12.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298928

RESUMO

Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.


Assuntos
Estresse Salino/genética , Transdução de Sinais/genética , Sophora/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Citocininas/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal/métodos , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Tolerância ao Sal/genética , Sophora/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Regulação para Cima/genética
13.
BMC Genomics ; 21(1): 423, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576152

RESUMO

BACKGROUND: Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome. RESULTS: Twelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides. CONCLUSION: Our study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Sophora/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Família Multigênica , Estresse Salino , Análise de Sequência de RNA , Sophora/genética , Estresse Fisiológico
14.
Bioorg Chem ; 99: 103812, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32302796

RESUMO

Alopecines A-E (1-5), five unusual matrine-type alkaloids featuring with an additional dichlorocyclopropane (1-3) or a di/tri-chloromethyl (4/5) attached on the D ring, were isolated from the seeds of Sophora alopecuroides. Their structures and absolute configurations were elucidated by extensive spectroscopic techniques, and X-ray diffraction analyses or time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations. Alkaloid 4 exhibited potent inhibitory effects on the proliferation of ConA-induced T lymphocytes or LPS-induced B cells with IC50 value of 3.98 or 3.74 µM, respectively.


Assuntos
Alcaloides/farmacologia , Imunossupressores/farmacologia , Extratos Vegetais/farmacologia , Sophora/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Linfócitos B/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Concanavalina A/antagonistas & inibidores , Concanavalina A/farmacologia , Relação Dose-Resposta a Droga , Feminino , Imunossupressores/química , Imunossupressores/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Estereoisomerismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos
15.
Biol Pharm Bull ; 43(6): 976-984, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188833

RESUMO

Cytisine N-methylene-(5,7-dihydroxy-4'-methoxy)-isoflavone (CNF2) is a new compound isolated from the Chinese herbal medicine Sophora alopecuroides. Preliminary pharmacodynamic studies demonstrated its activity in inhibiting breast cancer cell metastasis. This study examined the pharmacokinetics, absolute bioavailability, and tissue distribution of CNF2 in rats, and combined computer-aided technology to predict the druggability of CNF2. The binding site of CNF2 and the breast cancer target human epidermal growth factor receptor-2 (HER2) were examined with molecular docking technology. Next, ACD/Percepta software was used to predict the druggability of CNF2 based on the quantitative structure-activity relationship (QSAR). Finally, a simple and effective HPLC method was used to determine plasma pharmacokinetics and tissue distribution of CNF2 in rats. Prediction and experimental results show that compared with the positive control HER2 inhibitor SYR127063, CNF2 has a stronger binding affinity with HER2, suggesting that its efficacy is stronger; and the structure of CNF2 complies with the Lipinski's Rule of Five and has good drug-likeness. The residence time of CNF2 in rats is less than 4 h, and the metabolic rate is relatively fast; But the absolute bioavailability of CNF2 in rats was 6.6%, mainly distributed in the stomach, intestine, and lung tissues, where the CNF2 contents were 401.20, 144.01, and 245.82 µg/g, respectively. This study constructed rapid screening and preliminary evaluation of active compounds, which provided important references for the development and further research of such compounds.


Assuntos
Alcaloides/química , Alcaloides/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Isoflavonas/química , Isoflavonas/farmacocinética , Alcaloides/sangue , Animais , Antineoplásicos/sangue , Azocinas/sangue , Azocinas/química , Azocinas/farmacocinética , Feminino , Isoflavonas/sangue , Fígado/metabolismo , Simulação de Acoplamento Molecular , Quinolizinas/sangue , Quinolizinas/química , Quinolizinas/farmacocinética , Ratos Sprague-Dawley , Distribuição Tecidual
16.
Phytother Res ; 34(5): 1108-1113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31793731

RESUMO

The seeds of Sophora alopecuroides L. var. alopecuroides (S. alopecuroides) have alleviated morphine withdrawal in mice. Therefore, in this study, the alkaloid composition of S. alopecuroides extract was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis. Moreover, 50 abstinent opium addicts consumed three 400 mg extract capsules once daily and 50 other patients took placebo for 8 days. At the baseline and days 3 and 8, the clinical opiate withdrawal scale (COWS) was used to assess withdrawal symptoms. At the baseline and Day 8, the patients' blood levels of serum glutamate oxaloacetate transferase; serum glutamate pyruvate transferase; alkaline phosphatase; total, direct, and indirect bilirubins; creatinine and blood urea nitrogen; complete blood count; and prothrombine time were measured. The groups' parameter values were also compared. Sophocarpine, matrine, and sophoramine were the major alkaloids constituting, respectively, 32.85, 26.55, and 6.91% of the extract. The extract decreased the COWS score at Days 3 and 8 significantly compared with the placebo (p < .001). The extract did not significantly affect the blood parameters' values compared with the placebo (p > .05). There was no adverse drug effect. In conclusion, the extract reduces the acute opioid withdrawal symptoms and seems to have good safety and tolerability.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Sementes/química , Sophora/química , Adulto , Animais , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
17.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3104-3111, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32726018

RESUMO

To further study and fully exploit the medicinal plant Sophora alopecuroides, the molecular markers related with the phenotypic traits of alkaloid content in S. alopecuroides should be detected. In this study, SSR molecular markers were used to analyze the genetic diversity and genetic structure of 23 S. alopecuroides populations, in combination with the association analysis between molecular markers and the alkaloid contents. The results showed that P, H, I, G_(st) and N_m values were 40.10%, 0.335 3, 0.504 5, 0.433 7 and 0.625 9 respectively, in 23 S. alopecuroides populations. This indicated that there was less gene exchange and higher genetic differentiation among different S. alopecuroides populations. The results of SSR unweighted pair-group method with arithmetic means(UPGMA) cluster showed that the S. alopecuroides populations relationship from Xinjiang was far from the populations of other regions, but the populations of S. alopecuroides from Gansu, Inner Mongolia and Qinghai were closely relevant to those from Ningxia. The 23 populations were further divided into 2 genetic subpopulations by the population structure analysis. Through association analysis, a total of 26 loci in 13 SSR markers were found to be significantly associated(P<0.005)with the content of MA, OMA, SC and OSC, and the rate of explanation on the phenotype variance of related markers ranged from 36.45% to 77.93%. Among the locus, 1 each were related with MA and OSC content at interpretation rate reached as high as 50% with high threshold(P<0.000 1). These results could provide support for the discovery of important genes in the alkaloid biosynthetic and metabolic pathway of S. alopecuroides.


Assuntos
Alcaloides , Plantas Medicinais , Sophora/genética , China , Variação Genética , Repetições de Microssatélites , Fenótipo
18.
Microb Pathog ; 136: 103698, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470047

RESUMO

Quorum sensing (QS) mediates the coordination of population-based behavior in bacteria, which is highly involved in the formation of bacterial biofilms and virulence of bacteria in vivo. Therefore, an inhibition of QS and biofilm growth is of therapeutic interest. This study exhibited the an auto-inducer molecule (AI-2) activity as the most important component of the QS system was positively correlated with the growth and biofilm formation of S. epidermidis strains. In addition, TASA and matrine have a capacity to inhibit AI-2 in three S. epidermidis strains compared to the control (p < 0.01). This result indicated TASA and matrine can also decrease AI-2 activity in the biofilm of S. epidermidis (p < 0.05). By comparison, TASA was more effective than ceftazidime and matrine to inhibit the AI-2 activity in biofilm S.epidermidis reference strain ATCC35984 (p < 0.05). This result indicated potentials of TCM compounds TASA and matrine in prevention of biofilm formation in Staphylococcus epidermidis infections.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Homosserina/análogos & derivados , Lactonas/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Sophora/química , Staphylococcus epidermidis/efeitos dos fármacos , Alcaloides/isolamento & purificação , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homosserina/antagonistas & inibidores , Staphylococcus epidermidis/crescimento & desenvolvimento
19.
Phytochem Anal ; 29(5): 500-506, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29573297

RESUMO

INTRODUCTION: Different parts of Sophora alopecuroides L. (Fabaceae) have historically been used in traditional Chinese medicine for the treatment of dysentery and enteritis. This plant is also utilised as an important resource for industrial preparation of quinolizidine alkaloidal pharmaceuticals. OBJECTIVE: Establish a reliable, simple and fast analytical method for the quantitative determination of the quinolizidine-type alkaloids and extend understanding of the metabolism of quinolizidine-type alkaloids in S. alopecuroides. METHODS: Hydrophilic interaction chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode were used to determine seven quinolizidine-type alkaloids and their biosynthetic precursor, lysine, in S. alopecuroides. RESULTS: A good separation was obtained on an ultra high-performance liquid chromatography (UHPLC) amide column within 7 min. The overall limits of detection (LODs) were between 1.13 and 2.81 ng/ml, and limits of quantitation (LOQs) were between 3.80 and 8.48 ng/ml. The developed method was successfully applied to 21 samples of S. alopecuroides. The seeds had the highest concentration of alkaloids among the different plant parts. Oxymatrine and oxysophocarpine were the two most abundant alkaloids in all of the different parts and at different phenological growth stages. The contents of quinolizidine alkaloids showed correlations with lysine. CONCLUSION: A rapid and sensitive analytical method was established for the simultaneous determination of seven quinolizidine-type alkaloids and their biosynthetic precursor, lysine, in S. alopecuroides; the content of lysine may be used as a marker to predict alkaloid production.


Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Lisina/química , Quinolizidinas/química , Sophora/química , Espectrometria de Massas em Tandem/métodos , Alcaloides/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes
20.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3353-3361, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200741

RESUMO

The aim of this paper was to investigate the potential pharmacological effect of flavonoids in Sophora alopecuroides by network pharmacology. This study predicted the potential targets of 11 flavonoids of S. alopecuroides with help of reversed pharmacophore matching target recognition service platform (PharmMapper). The pathway information was acquired from DAVID and KEGG databases. Cytoscape software was used to construct the "ingredient-target-pathway" network of flavonoids active components of S. alopecuroides. The flavonoids active components of S. alopecuroides play anti-inflammatory, blood sugar regulating and other pharmacological effects by regulating 62 targets (such as INSR,KDR,MET) and intervening 44 pathways, such as B cell receptor signaling pathway, insulin signaling pathway, neurotrophin signaling pathway, and T cell receptor signaling pathway. In this study, the mechanism of "muti components-multitargets-multiple pathway" of flavonoids was studied. It reflects the multi-components, multi-targets and multiple pathway features of traditional Chinese medicine. Meanwhile, it provides a scientific basis for the elucidation the mechanism of S. alopecuroides as a medicine, and the development and utilization resources of S. alopecuroides.


Assuntos
Flavonoides/farmacologia , Sophora/química , Humanos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA