Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Sci Technol ; 57(13): 5231-5242, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947878

RESUMO

A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Poluentes Químicos da Água/análise , Minerais , Água , Carbono
2.
J Hazard Mater ; 478: 135618, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39181005

RESUMO

Effective characterization of dense non-aqueous phase liquid (DNAPL) source zones is crucial for remediating polluted sites. DNAPL often reside as residuals or pools within high-permeability lenses and above impermeable layers due to soil heterogeneity, gravity, and capillary barriers. Given the high cost of drilling, electrical resistivity tomography (ERT) techniques-including surface ERT and cross-borehole ERT, are commonly used for DNAPL source zone mapping and monitoring. However, the low spatial resolution of ERT increases uncertainty in source zone investigations. This study proposes a method for improving DNAPL mapping and monitoring by fusing surface and cross-borehole ERT data. Sandbox experiments were conducted to simulate a heterogeneous DNAPL source zone, employing both ERT methods for static mapping and dynamic monitoring. Reflective light imaging (RLM) was used to visualize DNAPL migration and provide saturation data, allowing for the quantification of ERT's effectiveness in characterizing DNAPL distribution. The results indicate that individual ERT methods face significant challenges in DNAPL source zone mapping due to background interference. Surface ERT alone tends to underestimate the extent of deeper DNAPL source zones. However, fusing surface and cross-borehole ERT results in a complementary enhancement of vertical spatial resolution, thereby improving the characterization of DNAPL source zones. The fusion of static and time-lapse ERT data substantially enhances DNAPL source zone mapping and monitoring capabilities. By calculating the ratio of the ERT-monitored area to the actual area using resistivity change contours (5 %, 10 %, 15 %), it was found that fusing surface and cross-borehole ERT data improved monitoring resolution by 50.48 % compared to surface ERT alone and by 22.95 % compared to cross-borehole ERT. Principal component analysis (PCA) was effective in fusing time-lapse data, while the weighted average method (WAM) outperformed PCA for static resistivity data fusion.

3.
Environ Pollut ; 356: 124380, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885828

RESUMO

Understanding the mechanisms of natural source zone depletion (NSZD) will support an improved understanding of the long-term sustainability of NSZD as a site remedy and how NSZD rates may change over time. This is the first study that has quantified and compared the rate of three NSZD mechanisms (methanogenesis, vaporization, and aqueous biodegradation) between two chemically distinct light non-aqueous phase liquid (LNAPL) source zones (aliphatic-rich naphtha for Zone #1 vs aromatic-rich pyrolysis gasoline for Zone #2) within the same geologic and climate conditions. The rates of NSZD attributable to vaporization (400 mg C/m2/d vs. 300 mg C/m2/d) and aqueous biodegradation (92 mg C/m2/d vs. 67 mg C/m2/d) were similar for Zone #1 and #2; however, the rate of methanogenesis NSZD was 6x higher in Zone #1 (1000 mg C/m2/d vs. 170 mg C/m2/d). These results suggest that the aliphatic hydrocarbons content in an LNAPL source may be a factor in the rate of methanogenesis NSZD. For both Zone #1 and #2, total NSZD rate determined using this "three mechanism" measurement method was in reasonable agreement with two other methods used to measure total NSZD rates (CO2 Gradient Method and Dynamic Closed Chamber Method), validating the "three mechanism" method as a tool to measure the total NSZD rate at a site and to provide an improved understanding of the predominant NSZD mechanism. Overall, this study highlights the importance of LNAPL type and chemical characteristics in determining source zone natural attenuation mechanism and its total rates.


Assuntos
Biodegradação Ambiental , Metano/análise , Gasolina , Monitoramento Ambiental/métodos , Volatilização
4.
Environ Pollut ; 343: 123166, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110050

RESUMO

Managed aquifer recharge (MAR) is a sustainable way of harvesting groundwater in water-stressed urbanized areas, where reclaimed wastewater or stormwater is applied on a large basin to infiltrate water into the groundwater aquifer naturally. This process could rapidly fluctuate the water table and move the capillary fringe boundary, and the change in flow dynamic and associated geochemical changes could trigger the release of sequestered pollutants, including per- and polyfluoroalkyl substances (PFAS), also known as 'forever chemicals', from the subsurface and capillary fringe. Yet, the potential of PFAS release from the subsurface and capillary zone during recharge events when the water table rapidly fluctuates has not been evaluated. This study uses laboratory column experiments to simulate PFAS release from pre-contaminated subsurface and capillary fringe during groundwater table fluctuation. The results reveal that the groundwater level fluctuations during MAR increased the release of perfluorobutanesulfonic acid (PFBS) and perfluorooctanesulfonic acid (PFOS) from the capillary fringe, but the fraction released depended on PFAS type and their association with soil colloids. A higher proportion of PFOS in column effluent was found to be associated with particles, while a greater portion of released PFBS was in a free or dissolved state. The direction of water table fluctuation did not affect the release of PFAS in this study. A lack of change in the concentration of bromide, a conservative tracer, during flow interruption, indicates that diffusion of PFAS through reconnected pores during water table rise had an insignificant effect on PFAS release. Overall, this study provides insights into how PFAS can be released from the subsurface and capillary fringe during managed aquifer recharge when the groundwater level is expected to fluctuate quickly.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Ácidos Sulfônicos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Solo , Água
5.
Chemosphere ; 361: 142551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852280

RESUMO

The fate of volatile organic compounds (VOC) vapors in the unsaturated zone is the basis for evaluating the natural attenuation potential and vapor intrusion risk. Microcosm and column experiments were conducted to study the effects chemical speciation and soil types/properties on the fate of petroleum VOCs in unsaturated zone. The biodegradation and total attenuation rates of the seven VOCs obtained by microcosm experiments in black soil and yellow earth were also generally higher than those in floodplain soil, lateritic red earth, and quartz sand. The VOC vapors in floodplain soil, lateritic red earth, and quartz sand showed slow total attenuation rates (<0.3 d-1). N-pentane, methylcyclopentane, and methylcyclohexane showed lower biodegradation rates than octane and three monoaromatic hydrocarbons. Volatilization into the atmosphere and biodegradation are two important natural attenuation paths for VOCs in unsaturated soil columns. The volatilization loss fractions of different volatile hydrocarbons in all five unsaturated soils were generally in the order: n-pentane (93.5%-97.8%) > methylcyclopentane (77.2%-85.5%) > methylcyclohexane (53.5%-69.2%) > benzene (17.1%-73.3%) > toluene (0-45.7%) > octane (1.9%-34.2%) > m-xylene (0-5.7%). The fractions by volatilization into the atmosphere of all seven hydrocarbons in quartz sand, lateritic red earth, and floodplain soil were close and higher compared to the yellow earth and black soil. Overall, this study illustrated the important roles chemical speciation and soil properties in determining the vapor-phase transport and natural attenuation of VOCs in the unsaturated zone.


Assuntos
Biodegradação Ambiental , Petróleo , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Petróleo/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Adsorção , Volatilização , Pentanos/química , Pentanos/análise , Octanos/química , Tolueno/química , Tolueno/análise , Benzeno/análise , Benzeno/química
6.
Life (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38541662

RESUMO

Natural source zone depletion (NSZD) is the main process of LNAPL (Light Non-Aqueous Phase Liquid) removal under natural conditions. The NSZD rates assessed ranged from 0.55 to 11.55 kg·m-2·a-1 (kilograms per square meter per year) in previous studies. However, most of these data were obtained from sandy sites, with few clayey sites. To gain knowledge of NSZD in clayey soil sites, the study assessed the NSZD of a petroleum hydrocarbon-contaminated clayey soil site in China, combining the concentration gradient method with metagenomic sequencing technology. The results show that the abundance of methane-producing key enzyme mcrA gene in the source zone was more abundant than in background areas, which suggests that there was methanogenesis, the key process of NSZD. The concentration gradients of oxygen and carbon dioxide existed only in shallow soil (<0.7 m), which suggests that there was a thin methane oxidation zone in the shallow zone. The calculated NSZD rates range from 0.23 to 1.15 kg·m-2·a-1, which fall within the moderate range compared to previous NSZD sites. This study expands the knowledge of NSZD in clayey soil and enriches the attenuation rate data for contaminated sites, which is of significant importance in managing petroleum contaminants.

7.
J Hazard Mater ; 480: 135829, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39298954

RESUMO

There is a need to develop field-scale, in situ screening technologies for assessing variations in aqueous film-forming foam (AFFF) concentrations in soils at former fire training and storage sites. Field-scale Spectral Induced Polarization (SIP) geophysical measurements were acquired on a transect crossing an AFFF source zone. Soil samples were acquired to determine variations in poly- and per-fluoroalkyl substances (PFAS) concentrations in soils, characterize soil texture, and create triplicate soil columns for laboratory SIP measurements. Field and laboratory observations show that SIP measurements are sensitive to the concentration of AFFF constituents associated with soil pore surface area. The specific polarizability and the phase of the SIP measurements for the laboratory samples were linearly correlated with total soil-sorbed PFAS concentration. The phase from the field SIP measurements was highest over the location of maximum PFAS concentration measured on the laboratory samples. However, a significant correlation between field-measured phase and laboratory-measured total PFAS concentration still needs to be established. These observations, along with the demonstrated sensitivity of the SIP response to the removal of soil PFAS using a methanol wash procedure, support the case for SIP characterization of AFFF source zones.

8.
J Contam Hydrol ; 258: 104240, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683375

RESUMO

Toxic organic contaminants in groundwater are pervasive at many industrial sites worldwide. These contaminants, such as chlorinated solvents, often appear as dense non-aqueous phase liquids (DNAPLs). To design efficient remediation strategies, detailed characterization of DNAPL Source Zone Architecture (SZA) is required. Since invasive borehole-based investigations suffer from limited spatial coverage, a non-intrusive geophysical method, direct current (DC) resistivity, has been applied to image the DNAPL distribution; however, in clay-sand environments, the ability of DC resistivity for DNAPLs imaging is limited since it cannot separate between DNAPLs and surrounding clay-sand soils. Moreover, the simplified parameterization of conventional inversion approaches cannot preserve physically realistic patterns of SZAs, and tends to smooth out any sharp spatial variations. In this paper, the induced polarization (IP) technique is combined with DC resistivity (DCIP) to provide plausible DNAPL characterization in clay-sand environments. Using petrophysical models, the DCIP data is utilized to provide tomograms of the DNAPL saturation (SN) and hydraulic conductivity (K). The DCIP-estimated K/SN tomograms are then integrated with borehole measurements in a deep learning-based joint inversion framework to accurately parameterize the highly irregular SZA and provide a refined DNAPL image. To evaluate the performance of the proposed approach, we conducted numerical experiments in a heterogeneous clay-sand aquifer with a complex SZA. Results demonstrate the standalone DC resistivity method fails to infer the DNAPL in complex clay-sand environments. In contrast, the combined DCIP technique provides the necessary information to reconstruct the large-scale features of K/SN fields, while integrating DCIP data with sparse but accurate borehole data results in a high resolution characterization of the SZA.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Areia , Argila , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 453: 131439, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37088018

RESUMO

Thermal conductive heating (TCH) is an in-situ thermal treatment (ISTT) technology for treating non-aqueous phase liquid (NAPL) source zones. Numerical models can be useful tools for improving remedial performance, but traditional multiphase flow models are rarely used to simulate mass recovery during ISTT applications at the field scale due to their computational expense. This study developed a 3D model based on macroscopic invasion percolation to simulate the vaporization of NAPL, and the subsequent vapor migration and potential condensation at the field scale. The model was used to simulate the mass recovery of trichloroethene (TCE) from a NAPL source zone under seven scenarios of different heater placements, including three scenarios with an undersized target treatment zone (TTZ). Simulation results showed that TCH was effective in removing NAPL within the TTZ, but the treatment zone did not extend far from the perimeter heaters. In addition, during heating, NAPL condensation outside the TTZ due to the escaping vapor was observed in all scenarios. Overall, the resulting mass recovery was lower in the three scenarios with an undersized TTZ (91-95%) than in the other four scenarios (≈ 99%). Moreover, the locations of unrecovered/condensed NAPL could be inferred by monitoring mass recovery tailing at individual extraction wells.

10.
Chemosphere ; 336: 139275, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343641

RESUMO

Traditional natural attenuation studies focus on aqueous process in the saturated zone while vapor-phase biodegradation and natural attenuation in the unsaturated zone received much less attention. This study used microcosm experiments to explore the vapor-phase biodegradation and natural attenuation of 23 petroleum VOCs in the unsaturated zone including 7 monoaromatic hydrocarbons, 6 n-alkanes, 4 cycloalkanes, 3 alkylcycloalkanes and 3 fuel ethers. We found that monoaromatic hydrocarbon vapors were easily attenuated with significantly high first-order attenuation rates (9.48 d-1-43.20 d-1) in live yellow earth, of which toluene and benzene had the highest rates (43.20 d-1 and 28.32 d-1, respectively). The 13 aliphatic hydrocarbons and 3 fuel ethers all have relatively low attenuation rates (<0.54 d-1) in live soil and negligible biodegradation contribution. We explored the effects of soil types (black soil, yellow earth, lateritic red earth and quartz sand), soil moisture (2, 5, 10, and 17 wt%) contents and temperatures (4, 15, 25, 35 and 45 °C) on the vapor attenuation. Results showed that increasing soil organic matter (SOM) content, silt content, porosity and soil microorganism numbers enhanced contaminant attenuation and remediation efficiency. Increasing moisture content reduced the apparent first-order biodegradation rates of monoaromatic hydrocarbon vapors. The vapor-phase biodegradation had optimal temperature (∼25 °C in yellow earth) and increasing or decreasing temperature slowed down biodegradation rate. Overall, this study enhanced our understanding of vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone, which is critical for the long-term management and remediation of petroleum contaminated site.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Gases , Solo , Poluentes do Solo/análise , Éteres
11.
J Contam Hydrol ; 255: 104144, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791614

RESUMO

Surfactants can aid subsurface remediation through three primary mechanisms - solubilization, mobilization and/or emulsification. Among these mechanisms, emulsification in porous media is generally not well studied or well understood; particularly in the context of treating sources containing multicomponent NAPL. The objective of this research was to elucidate the processes responsible for recovery of a multicomponent hydrocarbon NAPL when surfactant solutions are introduced within a porous medium to promote the formation of kinetically-stable oil-in-water emulsions. Emulsifier formulations considered here were selected to offer similar performance characteristics while relying on different families of non-ionic surfactants - nonylphenol ethoxylates or alcohol ethoxylates - for emulsification. The families of surfactants have particular environment relevance, as alcohol ethoxylates are often used where replacement of nonylphenol content is necessary. Results from batch and column studies suggest performance of the two formulations was similar. With both, a synergistic combination of emulsification and mobilization led to recovery of a synthetic gasoline NAPL. The relative contribution of solubilization to the recovery was found to be minor. Moreover, the physical processes associated with emulsification and mobilization acted to limit the amount of preferential recovery (or fractionation) of the multicomponent NAPL.


Assuntos
Petróleo , Emulsões , Tensoativos , Hidrocarbonetos , Etanol
12.
Chemosphere ; 325: 138405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931401

RESUMO

Cold regions are warming much faster than the global average, resulting in more frequent and intense freeze-thaw cycles (FTCs) in soils. In hydrocarbon-contaminated soils, FTCs modify the biogeochemical and physical processes controlling petroleum hydrocarbon (PHC) biodegradation and the associated generation of methane (CH4) and carbon dioxide (CO2). Thus, understanding the effects of FTCs on the biodegradation of PHCs is critical for environmental risk assessment and the design of remediation strategies for contaminated soils in cold regions. In this study, we developed a diffusion-reaction model that accounts for the effects of FTCs on toluene biodegradation, including methanogenic biodegradation. The model is verified against data generated in a 215 day-long batch experiment with soil collected from a PHC contaminated site in Ontario, Canada. The fully saturated soil incubations with six different treatments were exposed to successive 4-week FTCs, with temperatures oscillating between -10 °C and +15 °C, under anoxic conditions to stimulate methanogenic biodegradation. We measured the headspace concentrations and 13C isotope compositions of CH4 and CO2 and analyzed the porewater for pH, acetate, dissolved organic and inorganic carbon, and toluene. The numerical model represents solute diffusion, volatilization, sorption, as well as a reaction network of 13 biogeochemical processes. The model successfully simulates the soil porewater and headspace concentration time series data by representing the temperature dependencies of microbial reaction and gas diffusion rates during FTCs. According to the model results, the observed increases in the headspace concentrations of CH4 and CO2 by 87% and 136%, respectively, following toluene addition are explained by toluene fermentation and subsequent methanogenesis reactions. The experiment and the numerical simulation show that methanogenic degradation is the primary toluene attenuation mechanism under the electron acceptor-limited conditions experienced by the soil samples, representing 74% of the attenuation, with sorption contributing to 11%, and evaporation contributing to 15%. Also, the model-predicted contribution of acetate-based methanogenesis to total produced CH4 agrees with that derived from the 13C isotope data. The freezing-induced soil matrix organic carbon release is considered as an important process causing DOC increase following each freezing period according to the calculations of carbon balance and SUVA index. The simulation results of a no FTC scenario indicate that, in the absence of FTCs, CO2 and CH4 generation would decrease by 29% and 26%, respectively, and that toluene would be biodegraded 23% faster than in the FTC scenario. Because our modeling approach represents the dominant processes controlling PHC biodegradation and the associated CH4 and CO2 fluxes, it can be used to analyze the sensitivity of these processes to FTC frequency and duration driven by temperature fluctuations.


Assuntos
Dióxido de Carbono , Petróleo , Congelamento , Hidrocarbonetos/metabolismo , Metano , Petróleo/análise , Tolueno , Solo/química , Ontário
13.
J Contam Hydrol ; 248: 104007, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405439

RESUMO

Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years. Using depth profiles of soil gases (oxygen, carbon dioxide, methane, volatiles) above LNAPL, NSZD rates were estimated in 1994, 2006 and 2020 for diesel and 1999, 2009 and 2020 for gasoline. Each date also had soil-core mass estimates, which together with NSZD rates allow estimation of the longevity for LNAPL presence. Site-wide coring (in 1992, 2002, 2007) estimated LNAPL mass reductions of 12,000 t. For diesel NSZD, the ratio of NSZD rates for 2006 (16,000-49,000 L/ha/y) to those in 2020 (2600-14,000 L/ha/y) was ~3-6. By 2020, the 1994 diesel NSZD rates would have predicted the entire removal of measured mass (16-42 kg/m2). For gasoline, NSZD rates in 1999 were extremely high (50,000-270,000 L/ha/y) but 9-27 times lower (5800-10,000 L/ha/y) a decade later. The gasoline NSZD rates in 1999 predicted near complete mass removal in 2-12 years, but 10-11 kg/m2 was measured 10 and 21 years later which is 26% of the initial mass in 1999. The outcomes substantiate the need to understand NSZD rate changes over the lifetime of LNAPL-impacted sites.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Dióxido de Carbono/análise , Gasolina , Solo , Poluentes do Solo/análise
14.
J Contam Hydrol ; 248: 104002, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395442

RESUMO

The surfactant-enhanced gas sparging process designed to specifically target the source zone of an organic contaminant in an aquifer with minimal usage of injected additives was investigated using a physical model. Aqueous solutions of the anionic surfactant Sodium dodecylbenzne sulfonate (SDBS) and/or the thickener Sodium carboxymethylcellulose (SCMC) were applied in a contaminated horizontal layer in the simulated laboratory aquifer model followed by gas sparging. Fluorescein sodium salt (FSS) was added to the SDBS/SCMC solutions and represented the organic contaminant. Air and ozone were injected to generate gas sparging. A modified surfactant-enhanced ozone sparging method was also tested by applying additional air venting ports installed in the aquifer above the gas injection zone. Both non-aqueous phase liquid (NAPL) and water-dissolved TCA were applied to the SDBS-applied region to evaluate the removal of contaminants during gas sparging. A significant expansion of the de-saturated zone for the SDBS-applied region was observed during air sparging. During ozone sparging, the fluorescence by FSS in the SDBS-applied layer disappeared over a much wider range than that of the control experiment. SCMC application enhanced the performance of the SDBS-applied gas sparging process. The TCA mass removed by volatilization during air sparging from the SDBS-applied layer was 2.3 times the application in the absence of SDBS. Among five regions of injected NAPL contamination located above the single gas injection port, and during 2 h of ozone sparging, with SDBS applied, more than 50% of fluorescence in the NAPL was removed, whereas under the same conditions with no SDBS applied, less than 30% was removed. Diverted gas flow through the venting ports installed in the aquifer model induced a horizontally expanded oxidative reaction zone during ozone sparging. This study demonstrates enhanced gas sparging performance for the removal of contaminants from the aquifer with limited usage of additives applied specifically to the source zone.


Assuntos
Água Subterrânea , Ozônio , Poluentes Químicos da Água , Carboximetilcelulose Sódica , Tensoativos , Volatilização , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 430: 128482, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739665

RESUMO

Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Humanos , Hidrocarbonetos/metabolismo , Naftalenos , Petróleo/análise , Poluição por Petróleo/análise
16.
J Contam Hydrol ; 251: 104096, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308863

RESUMO

Many studies have investigated the migration and entrapment processes of source zones from dense non-aqueous phase liquid (DNAPL) contamination under different conditions. However, the characterization of occupying area by source zone (or source shape) in water-saturated aquifers is still rudimentarily considered. In this study, we demonstrated this issue (1) by providing a brief review of existing approaches for source shape consideration, (2) by proposing an approach with simple shape parameters based on the non-uniformity of source widths, and (3) by providing exemplary applications of our proposed approach on shapes already published in previous research works. Our literature review suggested that the source zone in mathematical approaches is generally characterized as simple geometrical shapes (arbitrary lines or rectangles) or system-defined parameters that contrast to complex and discontinuous shapes observed in the real world. But the characterization of such complex shapes is still not possible with acceptable efforts. Therefore, we proposed an approach to parameterize the source shape by considering the variation of width and midpoints over the depth of the entire source zone and formulate four parameters based on population statistics (mean, standard deviation). To illustrate the suitability of our approach, we applied it to the results of lab experiments, and by analyzing these complex shapes, we highlighted the potential for improving the characterization techniques of non-uniformity of the source zones.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Modelos Teóricos
17.
J Contam Hydrol ; 244: 103920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798507

RESUMO

A straightforward, upscaled DNAPL mass dissolution model is developed using relatively simple input consisting of characteristic dimensions and saturations of a DNAPL accumulation. Multiple accumulations are aggregated into a single source zone volume. Physically, the dissolution process is a combination of flow through the mass (advective component) and flow around the mass (dispersive component). The contribution of each component is based on initial characteristic length scales and the average initial saturation. Changes over time with the depletion of mass are captured with a changing relative permeability and a power law relationship for the fraction of initial mass remaining. The utility of the upscaled process model is demonstrated with data from three studies: numerical simulation of multiple pools, two-dimensional test cell experiments with mixed architecture and with heterogeneous soil, and a controlled field study of multicomponent DNAPL release and depletion. Use of the model successfully reproduced the observed multistage mass discharge in each study and illuminated the governing processes. The power law exponent was relatively constant for the various conditions and relative permeability changes were integral to the success. The numerical and experimental studies were run to complete mass depletion which the upscaled model matched. The input parameters are minimal and are found in typical DNAPL source zone characterization data.


Assuntos
Poluentes Químicos da Água , Simulação por Computador , Modelos Teóricos , Solubilidade , Poluentes Químicos da Água/análise
18.
Life (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676063

RESUMO

An increasing number of studies have demonstrated that natural source zone depletion (NSZD) in the vadose zone accounts for the majority (90%~99%) of the natural attenuation of light non-aqueous phase liquid (LNAPL). Until now, 0.05 to 12 kg/a.m2 NSZD rates at tens of petroleum LNAPL source zones have been determined in the middle or late evolution stage of LNAPL release, in which limited volatile organic compounds (VOCs) and methane (CH4) were detected. NSZD rates are normally estimated by the gradient method, yet the associated functional microbial activity remains poorly investigated. Herein, the NSZD at an LNAPL-releasing site was studied using both soil gas gradient methods quantifying the O2, CO2, CH4, and VOCs concentrations and molecular biology methods quantifying the abundance of the pmoA and mcrA genes. The results showed that the methanogenesis rates were around 4 to 40 kg/a.m2. The values were greater than the rates calculated by the sum of CH4 escaping (0.3~1.2 kg/a.m2) and O2 consuming (3~13 kg/a.m2) or CO2 generating rates (2~4 kg/a.m2), suggesting that the generated CH4 was oxidized but not thoroughly to CO2. The functional gene quantification also supported the indication of this process. Therefore, the NSZD rates at the site roughly equaled the methanogenesis rates (4~40 kg/a.m2), which were greater than most of the previously studied sites with a 90th percentile value of 4 kg/a.m2. The study extended the current knowledge of the NSZD and has significant implications for LNAPL remediation management.

19.
J Contam Hydrol ; 240: 103795, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33799019

RESUMO

Surficial CO2 efflux surveys have been used to delineate hydrocarbon source zones in contaminated aquifers and provide estimates of hydrocarbon biodegradation rates. This approach requires distinguishing between CO2 derived from petroleum degradation and CO2 produced from natural soil respiration. To this end, radiocarbon has been used to differentiate between 14C-depleted CO2 from hydrocarbon degradation and 14C-enriched CO2 from natural soil respiration to effectively quantify the contribution of each source to total CO2 efflux, and by deduction natural source zone depletion (NSZD) rates. In this study, a systematic method comparison has been conducted to evaluate available approaches for collecting CO2 gas samples for radiocarbon analysis used to correct total CO2 efflux measurements for quantifying natural source zone depletion rates. Gas samples for radiocarbon analysis were sampled from (i) dynamic closed chambers (located at ground surface), (ii) static chambers (also at ground surface), (iii) shallow soil gas probes (0.3 m bgs), and (iv) soil gas monitoring wells (~0.6 m below ground surface) during a CO2 efflux survey conducted at the site of a historical pipeline rupture near Bemidji, MN. The mean fraction of radiocarbon (F14C) obtained from samples overlying the source zone were (i) 0.93 ± 0.01, (ii) 0.73 ± 0.03, (iii) 0.71 ± 0.04, and (iv) 0.41 ± 0.06, for the four methods respectively. These F14C values were used to apportion total CO2 efflux measurements into contributions of contaminant-derived CO2 efflux and natural soil respiration to evaluate natural source zone depletion processes. Results suggest that the method of radiocarbon sampling has a significant effect on the calculated fraction of the CO2 efflux originating from contaminant-related soil respiration, with contributions ranging between 27% and 59% of total soil respiration. Results indicate that radiocarbon sampled from static chambers and shallow soil gas probes methods offer the best compromise between CO2 sample yield and sample representativeness, providing the most reliable estimates of CO2 effluxes originating from contaminant degradation. However, the results also show that for this study, all methods agree within a factor of <2.3 regarding the inferred NSZD rates.


Assuntos
Água Subterrânea , Petróleo , Biodegradação Ambiental , Dióxido de Carbono/análise , Hidrocarbonetos
20.
MethodsX ; 8: 101503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754774

RESUMO

Microbially-mediated hydrocarbon degradation is well documented. However, how these microbial processes occur in complex subsurface petroleum impacted systems remains unclear, and this knowledge is needed to guide technologies to enhance microbial degradation effectively. Analysis of RNA derived from soils impacted by petroleum liquids would allow for analysis of active microbial communities, and a deeper understanding of the dynamic biochemistry occurring during site remediation. However, RNA analysis in soils impacted with petroleum liquids is challenging due to: (A) RNA being inherently unstable, and (B) petroleum impacted soils containing problematic levels of polymerase chain reaction (PCR) inhibitors that must be removed to yield high-purity RNA for downstream analysis. A previously published soil wash pretreatment step and a commercially available DNA extraction kit protocol were combined and modified to be able to purify RNA from soils containing petroleum liquids.•A key modification involved reformulation of the pretreatment solution via replacing water as the diluent with a commercially-available RNA preservation solution.•Methods were developed and demonstrated using cryogenically preserved soils from three former petroleum refineries. Results showed the new soil washing approach had no adverse effects on RNA recovery but did improve RNA quality, by PCR inhibitor removal, which in turn allows for characterization of active microbial communities present in petroleum impacted soils.•In summary, our method for extracting RNA from petroleum-impacted soils provides a promising new tool for resolving metabolic processes at sites as they progress toward restoration via natural and/or engineered remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA