RESUMO
Plant taxa can be broadly divided based on the mechanisms enabling persistence through whole-crown disturbances, specifically whether individuals resprout, populations reseed, or both or neither of these mechanisms are employed. At scales from species through to communities, the balance of disturbance-response types has major ramifications for ecological function and biodiversity conservation. In some lineages, morphologically identical populations except for differences in a disturbance-response trait (e.g.⯱â¯lignotuber) occur, offering the opportunity to apply genetic analyses to test whether trait state is representative of broader genetic distinctiveness, or alternatively, variation in response to local environmental conditions. In eucalypts, a globally-significant plant group, we apply dense taxon sampling and high-density, genome-wide markers to test monophyly and genetic divergence among pairs of essentially morphologically-identical taxa excepting lignotuber state. Taxa differing in lignotuber state formed discrete phylogenetic lineages. Obligate-seeders were monophyletic and strongly differentiated from each other and lignotuber-resprouters, but this was not the case for all lignotuber-resprouter taxa. One lignotuber state transition within our sample clade was supported, implying convergence of some non-lignotuber morphology characters. Greater evolutionary rate associated with the obligate-seeder disturbance-response strategy offers a plausible explanation for these genetic patterns. Lignotuber state is an important taxonomic character in eucalypts, with transitions in lignotuber state having contributed to the evolution of the exceptional diversity of eucalypts in south-western Australia. Differences in lignotuber state have evolved directionally with respect to environmental conditions.
Assuntos
Eucalyptus/classificação , Eucalyptus/genética , Genômica , Filogenia , Madeira/genética , Biodiversidade , Geografia , Fenótipo , Análise de Componente Principal , Característica Quantitativa Herdável , Chuva , Austrália do Sul , Temperatura , Austrália OcidentalRESUMO
This study provides a comprehensive assessment of the dietary composition of the ambush predator Neosebastes pandus and compares the diets of 49 species from 39 studies of three benthic predatory families in the Scorpaeniformes: Scorpaenidae (20 species), Triglidae (19 species) and Platycephalidae (10 species). A total of 275 N. pandus were collected from the west (Rottnest Island) and south (Esperance) coasts of south-western Australia and the percentage frequency and volumetric contribution of the stomach contents identified. Fish from the west coast consumed a greater mean number of broad taxonomic groups and were more diverse in their diet than fish from the south coast. Cephalopods, brachyurans and teleosts were the largest overall contributors to diet, with teleosts being more important to diets of west-coast fish and polychaetes for south-coast fish. This reflects differences in habitat between the two locations. Dietary composition also changed with increasing body size, reflecting morphological changes that allow bigger fish to capture and ingest larger, more mobile prey. Meta-analysis of the diets of 49 species of scorpaenid, triglid and platycephalid revealed that they feed predominantly on teleosts and large crustaceans. Significant differences in diet were detected among families, with platycephalids being the most distinct and feeding more on teleosts than scorpaenids and triglids.
Assuntos
Dieta , Perciformes , Animais , Tamanho Corporal , Ecossistema , Comportamento Alimentar , Peixes , Conteúdo Gastrointestinal , Comportamento Predatório , Estações do Ano , Austrália OcidentalRESUMO
There is little understanding of how climate change will impact potamodromous freshwater fishes. Since the mid 1970s, a decline in annual rainfall in south-western Australia (a globally recognized biodiversity hotspot) has resulted in the rivers of the region undergoing severe reductions in surface flows (ca. 50%). There is universal agreement amongst Global Climate Models that rainfall will continue to decline in this region. Limited data are available on the movement patterns of the endemic freshwater fishes of south-western Australia or on the relationship between their life histories and hydrology. We used this region as a model to determine how dramatic hydrological change may impact potamodromous freshwater fishes. Migration patterns of fishes in the largest river in south-western Australia were quantified over a 4 year period and were related to a number of key environmental variables including discharge, temperature, pH, conductivity and dissolved oxygen. Most of the endemic freshwater fishes were potamodromous, displaying lateral seasonal spawning migrations from the main channel into tributaries, and there were significant temporal differences in movement patterns between species. Using a model averaging approach, amount of discharge was clearly the best predictor of upstream and downstream movement for most species. Given past and projected reductions in surface flow and groundwater, the findings have major implications for future recruitment rates and population viabilities of potamodromous fishes. Freshwater ecosystems in drying climatic regions can only be managed effectively if such hydro-ecological relationships are considered. Proactive management and addressing existing anthropogenic stressors on aquatic ecosystems associated with the development of surface and groundwater resources and land use is required to increase the resistance and resilience of potamodromous fishes to ongoing flow reductions.
Assuntos
Distribuição Animal , Mudança Climática , Peixes/fisiologia , Rios , Migração Animal , Animais , Dinâmica Populacional , Chuva , Movimentos da Água , Austrália OcidentalRESUMO
BACKGROUND AND AIMS: Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. METHODS: The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. KEY RESULTS: The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. CONCLUSIONS: The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
Assuntos
Eucalyptus/genética , Genética Populacional , Repetições de Microssatélites , Núcleo Celular/genética , Cloroplastos/genética , Mudança Climática , Variação Genética , Haplótipos/genética , Camada de Gelo , Paleontologia , Filogeografia , Austrália do SulRESUMO
South-western Australia is a global biodiversity hotspot and has some of the oldest and most phosphorus (P)-impoverished soils in the world. Proteaceae is one of the dominant P-efficient plant families there, but it is unknown how leaf P concentrations and foliar P allocation of Proteaceae and coexisting dominant plant families vary between seasons and habitats. To investigate this, we selected 18 species from Proteaceae, Myrtaceae and Fabaceae, six from each family, in two habitats from Alison Baird Reserve (32°1'19''S 15°58'52''E) in Western Australia. Total leaf P and nitrogen (N) concentrations, leaf mass per area, photosynthetic rate, pre-dawn leaf water potential and foliar P fractions were determined for each species both at the end of summer (March 2019 and early April 2020) and at the end of winter (September 2019). Soil P availability was also determined for each site. This is the very first study that focused on seasonal changes of foliar P fractions from different P-impoverished environments in three plant families. However, contrary to our expectation, we found little evidence for convergence of foliar P allocation within family, season or habitat. Each species exhibited a specific species-dependent pattern of foliar P allocation, and many species showed differences between seasons. Native plants in south-western Australia converged on a high photosynthetic P-use efficiency, but each species showed its own unique way associated with that outcome.
RESUMO
The characteristics of detached macroalgae (drift) in nearby highly eutrophic and mesotrophic estuaries in south-western Australia are compared to elucidate the magnitude and types of changes that occur in macroalgal drift when estuaries receive excessive nutrient input. Drift characteristics in the large basins of the microtidal, eutrophic Peel-Harvey and mesotrophic Swan-Canning, which is not subjected to large nutrient inputs directly from agricultural land, differed markedly. Biomass (dry weight) in mesotrophic estuary was dominated by rhodophytes (92%), particularly Laurencia and Hypnea, and in eutrophic estuary by opportunistic chlorophytes (68%), especially Chaetomorpha and Ulva. Prevalence and biomass of drift were far greater in the eutrophic estuary, particularly during summer and autumn when macroalgal growth rose sharply. Macroalgal biomass in the eutrophic estuary was positively related to salinity. These results facilitate predictions of how climatic and other anthropogenic changes influence extent of macroalgal growth and thus change the estuarine environment.
Assuntos
Estuários , Eutrofização , Biomassa , Austrália do Sul , Austrália OcidentalRESUMO
Understanding fisher beliefs and attitudes towards specific management strategies can help inform and improve fisheries management, and thus stock sustainability. Previous studies highlight a lack of fisher awareness regarding environmental issues influencing the systems they utilise and the negative impacts of specific strategies, such as stock enhancement. Our study used a two-phase approach to first elicit and then measure the strength of common fishers' beliefs and associated attitudes regarding stock enhancement. Specifically, this research focused on recreational fishers of an estuarine crab fishery (Portunus armatus) in south-western Australia. The results demonstrate that recreational fishers believe stock enhancement could have strong positive outcomes, but also recognise that this management strategy could lead to some negative outcomes, though the latter are perceived as less likely to happen. This contrasts with previous research on fisheries stocking and demonstrates the value of using the two-phase approach to clarify fishers' perceptions of particular management approaches. To reduce fisher dissatisfaction with management actions, careful communication on the benefits and costs of stock enhancement is recommended. Our study highlights the significance of integrating social sciences into fisheries research, and the need to better understand fishing community beliefs to ensure effective management of the fishery.
Assuntos
Conservação dos Recursos Naturais , Pesqueiros , PeixesRESUMO
Mesozooplankton was sampled seasonally in a large microtidal estuary (Peel-Harvey) suffering from massive macroalgal growths and cyanobacterial blooms. Comparisons with other estuaries indicate that eutrophication led to copepod abundance declining and macroalgal-associated species increasing. Mesozooplankton species are almost exclusively autochthonous, i.e. spend entire life cycle within the estuary. Meroplanktonic species are virtually absent because main benthic macroinvertebrate species undergo direct benthic rather than planktotrophic development. There are also few abundant holoplanktonic species. Most species are tychoplanktonic, i.e. benthic and transported into plankton through physical disturbance of sediment. Species number, concentration and Simpson's Index are greater during night than day. Annual cyclical changes in species composition are related closely to changes in salinity. At the most degraded site, nematode concentrations were high and the species number and concentration changed markedly during extreme eutrophication, when oxygen concentrations were low, disrupting annual cyclical changes in species composition.
Assuntos
Copépodes/fisiologia , Estuários , Eutrofização , Zooplâncton/fisiologia , Animais , Austrália , Cianobactérias/fisiologia , Monitoramento Ambiental , Densidade Demográfica , Salinidade , Estações do AnoRESUMO
The element found in highest concentration in the shoots of the South-western Australian plants surveyed is N followed by K ≤ Ca ≤ Cl ≤ Mg ≤ P ≤ Mn ≤ Zn ≤ Cu. The oligotrophic families (mainly primitive Australian pioneer families Proteaceae, Casuarinaceae, Restionaceae and Epacridaceae) have the lowest nutrient concentrations. The nitrogen-fixing Mimosaceae and Papilionaceae have the highest N concentrations though the nitrogen-fixing Casaurinaceae have relatively low N concentrations. The native shrubs have lower tissue concentrations than the introduced species. Certain families possess a great variation in the concentration of tissue Mn (e.g. Proteaceae, Casuarinaceae) with certain individuals containing high concentrations compared to the average South-west Australian species. Increased amounts of soil nutrients can cause an increase in shoot concentration of the species found growing there, e.g. rich habitats (limestone heath) tend to have higher concentrations than those found on depleted habitats (sandplain heaths). There was no correlation found between shoot concentrations and mean annual rainfall.
RESUMO
⢠The dependence of seeds of terrestrial orchids on specific fungi for germination provides a means of locating these fungi in the wild and to investigate the role of appropriate fungi in the germination of orchid seed and development of seedlings under natural field conditions. ⢠Seed baits, comprising orchid (Caladenia arenicola) seed enclosed in fine nylon mesh, were placed at sample points along four transects through two orchid populations in bushland in Western Australia. Seed germination was scored and compared with adult orchid plant distribution and soil factors. ⢠A small fraction of available seed (< 1%) germinated to a stage of tuber formation where survival over the subsequent dry season would have been possible. Germination increased in the vicinity of adult C. arenicola plants, but other factors, such as soil potassium levels and presence of leaf litter, were also correlated with seed germination. ⢠The measurement of the spatial variability in germination events within an orchid habitat demonstrated the availability of new recruitment sites. This information is required to assess the natural recruitment capacity and the potential for orchid reintroduction in natural habitats.