Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Methods ; 223: 95-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301751

RESUMO

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Assuntos
DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , DNA/genética , DNA de Cadeia Simples/genética , Aminoácidos , Bioensaio , Corantes
2.
Methods ; 224: 47-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387709

RESUMO

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , Reparo por Excisão , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , Raios Ultravioleta , Nucleotídeos , Ligação Proteica
3.
Chembiochem ; 25(4): e202300798, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169080

RESUMO

Site-specific modification of proteins with synthetic fluorescent tag effectively improves the resolution of imaging, and such a labeling method with negligible three-dimensional structural perturbations and minimal impact on the biological functions of proteins is of high interest to dissect the high-resolution activities of biomolecules in complex systems. To this end, several non-emissive iridium(III) complexes [Ir(C-N)2 (H2 O)2 ]+ OTF- (C-N denotes various cyclometalated ligands) were designed and synthesized. These complexes were tested for attaching a protein by coordinating to H/X (HisMet, HisHis, and HisCys) that are separated by i and i+4 in α-helix. Replacement of the two labile water ligands in the iridium(III) complex by a protein HisHis pair increases the luminescent intensity up to over 100 folds. This labeling approach has been demonstrated in a highly specific and efficient manner in a number of proteins, and it is also feasible for labeling target proteins in cell lysates.


Assuntos
Irídio , Luminescência , Irídio/química
4.
Methods ; 211: 68-72, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36781034

RESUMO

The Shwachman-Diamond syndrome (SDS) is a rare inherited ribosomopathy that is predominantly caused by mutations in the Shwachman-Bodian-Diamond Syndrome gene (SBDS). SBDS is a ribosomal maturation factor that is essential for the release of eukaryotic translation initiation factor 6 (eIF6) from 60S ribosomal subunits during the late stages of 60S maturation. Release of eIF6 is critical to permit inter-subunit interactions between the 60S and 40S subunits and to form translationally competent 80S monosomes. SBDS has three key domains that are highly flexible and adopt varied conformations in solution. To better understand the domain dynamics of SBDS upon binding to 60S and to assess the effects of SDS-disease specific mutations, we aimed to site-specifically label individual domains of SBDS. Here we detail the generation of a fluorescently labeled SBDS to monitor the dynamics of select domains upon binding to 60S. We describe the incorporation of 4-azido-l-phenylalanine (4AZP), a noncanonical amino acid in human SBDS. Site-specific labeling of SBDS using fluorophore and assessment of 60S binding activity are also described. Such labeling approaches to capture the interactions of individual domains of SBDS with 60S are also applicable to study the dynamics of other multi-domain proteins that interact with the ribosomal subunits.


Assuntos
Proteínas , Subunidades Ribossômicas Maiores de Eucariotos , Humanos , Subunidades Ribossômicas Maiores de Eucariotos/química , Síndrome de Shwachman-Diamond/metabolismo , Proteínas/química , Ribossomos/metabolismo , Mutação
5.
Methods ; 213: 18-25, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36940840

RESUMO

The transcription factor NF-ĸB is a central mediator of immune and inflammatory responses. To understand the regulation of NF-ĸB, it is important to probe the underlying thermodynamics, kinetics, and conformational dynamics of the NF-ĸB/IĸBα/DNA interaction network. The development of genetic incorporation of non-canonical amino acids (ncAA) has enabled the installation of biophysical probes into proteins with site specificity. Recent single-molecule FRET (smFRET) studies of NF-ĸB with site-specific labeling via ncAA incorporation revealed the conformational dynamics for kinetic control of DNA-binding mediated by IĸBα. Here we report the design and protocols for incorporating the ncAA p-azidophenylalanine (pAzF) into NF-ĸB and site-specific fluorophore labeling with copper-free click chemistry for smFRET. We also expanded the ncAA toolbox of NF-ĸB to include p-benzoylphenylalanine (pBpa) for UV crosslinking mass spectrometry (XL-MS) and incorporated both pAzF and pBpa into the full-length NF-ĸB RelA subunit which includes the intrinsically disordered transactivation domain.


Assuntos
Aminoácidos , NF-kappa B , Aminoácidos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fenilalanina
6.
J Labelled Comp Radiopharm ; 66(14): 444-451, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873934

RESUMO

Nanobodies (Nbs) hold significant potential in molecular imaging due to their unique characteristics. However, there are challenges to overcome when it comes to brain imaging. To address these obstacles, collaborative efforts and interdisciplinary research are needed. This article aims to raise awareness and encourage collaboration among researchers from various fields to find solutions for effective brain imaging using Nbs. By fostering cooperation and knowledge sharing, we can make progress in overcoming the existing limitations and pave the way for improved molecular imaging techniques in the future.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Imagem Molecular/métodos
7.
Chembiochem ; 23(24): e202200416, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005282

RESUMO

NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.


Assuntos
Elementos da Série dos Lantanídeos , Polissacarídeos , Polissacarídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas
8.
Anal Biochem ; 640: 114524, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933004

RESUMO

Human fibroblast growth factor-1 (hFGF1) binding to its receptor and heparin play critical roles in cell proliferation, angiogenesis and wound healing but is also implicated in cancer. Fluorescence imaging is a powerful approach to study such protein interactions, but it is not always obvious if the site chosen will be efficiently labeled, often relying on trial-and-error. To provide a more systematic approach towards an efficient site-specific labeling strategy, we labeled two structurally distinct regions of the protein - the flexible N-terminus and a rigid loop. Several dyes were chosen to cover the visible region and to investigate how the structure of the dye affects the labeling efficiency. Flexibility in either the protein labeling site or the dye structure was found to result in high labeling efficiency, but flexibility in both resulted in a significant decrease in labeling efficiency. Conversely, too much rigidity in both can result in dye-protein interactions that can aggregate the protein. Importantly, site-specifically labeling hFGF1 in these regions maintained biological activity. These results could be applicable to other proteins by considering the flexibility of both the protein labeling site and the dye structure.


Assuntos
Fator 1 de Crescimento de Fibroblastos
9.
Biocell ; 46(8): 1789-1801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601815

RESUMO

The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.

10.
Chembiochem ; 22(7): 1201-1204, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33174659

RESUMO

Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins' native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.


Assuntos
Basigina/metabolismo , Receptores ErbB/metabolismo , Corantes Fluorescentes/metabolismo , Tripsina/metabolismo , Basigina/química , Biocatálise , Dipeptídeos/metabolismo , Receptores ErbB/química , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Especificidade por Substrato , Tripsina/genética
11.
Chemistry ; 26(8): 1800-1810, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31692134

RESUMO

Nature relies on reading and synthesizing the genetic code with high fidelity. Nucleic acid building blocks that are orthogonal to the canonical A-T and G-C base-pairs are therefore uniquely suitable to facilitate position-specific labeling of nucleic acids. Here, we employ the orthogonal kappa-xanthosine-base-pair for in vitro transcription of labeled RNA. We devised an improved synthetic route to obtain the phosphoramidite of the deoxy-version of the kappa nucleoside in solid phase synthesis. From this DNA template, we demonstrate the reliable incorporation of xanthosine during in vitro transcription. Using NMR spectroscopy, we show that xanthosine introduces only minor structural changes in an RNA helix. We furthermore synthesized a clickable 7-deaza-xanthosine, which allows to site-specifically modify transcribed RNA molecules with fluorophores or other labels.


Assuntos
RNA/química , Ribonucleosídeos/química , Pareamento de Bases , Química Click , Código Genético , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA/metabolismo , Ribonucleosídeos/metabolismo , Técnicas de Síntese em Fase Sólida , Xantinas
12.
Biotechnol Bioeng ; 117(2): 523-530, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612992

RESUMO

Photosynthesis is one of the most fundamental and complex mechanisms in nature. It is a well-studied process, however, some photosynthetic mechanisms are yet to be deciphered. One of the many proteins that take part in photosynthesis, cytochrome bd, is a terminal oxidase protein that plays a role both in photosynthesis and in respiration in various organisms, specifically, in cyanobacteria. To clarify the role of cytochrome bd in cyanobacteria, a system for the incorporation of an unnatural amino acid into a genomic membrane protein cytochrome bd was constructed in Synechococcus sp. PCC7942. N-propargyl- l-lysine (PrK) was incorporated into mutants of cytochrome bd. Incorporation was verified and the functionality of the mutant cytochrome bd was tested, revealing that both electrochemical and biochemical activities were relatively similar to those of the wild-type protein. The incorporation of PrK was followed by a highly specific labeling and localization of the protein. PrK that was incorporated into the protein enabled a "click" reaction in a bio-orthogonal manner through its alkyne group in a highly specific manner. Cytochrome bd was found to be localized mostly in thylakoid membranes, as was confirmed by an enzyme-linked immunosorbent assay, indicating that our developed localization method is reliable and can be further used to label endogenous proteins in cyanobacteria.


Assuntos
Proteínas de Bactérias , Grupo dos Citocromos b , Código Genético/genética , Synechococcus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Transporte de Elétrons/genética , Lisina/análogos & derivados , Lisina/química , Lisina/genética , Lisina/metabolismo , Mutação/genética , Synechococcus/citologia , Synechococcus/genética , Synechococcus/metabolismo
13.
RNA Biol ; 16(9): 1119-1132, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30874475

RESUMO

Most single-molecule techniques observing RNA in vitro or in vivo require fluorescent labels that have to be connected to the RNA of interest. In recent years, a plethora of methods has been developed to achieve site-specific labelling, in many cases under near-native conditions. Here, we review chemical as well as enzymatic labelling methods that are compatible with single-molecule fluorescence spectroscopy or microscopy and show how these can be combined to offer a large variety of options to site-specifically place one or more labels in an RNA of interest. By either chemically forming a covalent bond or non-covalent hybridization, these techniques are prerequisites to perform state-of-the-art single-molecule experiments.


Assuntos
RNA/isolamento & purificação , Imagem Individual de Molécula , Coloração e Rotulagem/tendências , Química Click , Transferência Ressonante de Energia de Fluorescência/tendências , Corantes Fluorescentes/química , RNA/química , RNA/genética
14.
Angew Chem Int Ed Engl ; 58(11): 3438-3443, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30614604

RESUMO

Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo-1,2-dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.


Assuntos
Compostos de Boro/síntese química , Sondas Moleculares/síntese química , Nanopartículas/química , Peptídeos/química , Proteínas/análise , Compostos de Boro/metabolismo , Linhagem Celular , Química Click , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Proteínas/imunologia , Espectrometria de Massa de Íon Secundário , Espectroscopia de Perda de Energia de Elétrons
15.
J Cell Sci ; 129(7): 1512-22, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26872787

RESUMO

Placement of a tag sequence is usually limited to either terminal end of the target protein, reducing the potential of epitope tags for various labeling applications. The PA tag is a dodecapeptide (GVAMPGAEDDVV) that is recognized by a high-affinity antibody NZ-1. We determined the crystal structure of the PA-tag-NZ-1 complex and found that NZ-1 recognizes a central segment of the PA tag peptide in a tight ß-turn configuration, suggesting that it is compatible with the insertion into a loop. This possibility was tested and confirmed using multiple integrin subunits and semaphorin. More specifically, the PA tag can be inserted at multiple locations within the integrin αIIb subunit (encoded by ITGA2B) of the fibrinogen receptor αIIbß3 integrin (of which the ß3 subunit is encoded by ITGB3) without affecting the structural and functional integrity, while maintaining its high affinity for NZ-1. The large choice of the sites for 'epitope grafting' enabled the placement of the PA tag at a location whose accessibility is modulated during the biological action of the receptor. Thus, we succeeded in converting a general anti-tag antibody into a special anti-integrin antibody that can be classified as a ligand-induced binding site antibody.


Assuntos
Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Integrina alfa2/metabolismo , Integrina beta3/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Integrina alfa2/genética , Integrina beta3/genética , Glicoproteínas de Membrana/imunologia , Conformação Proteica , Semaforinas/genética , Semaforinas/metabolismo
16.
Bioorg Med Chem Lett ; 28(8): 1404-1409, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555154

RESUMO

The solvatochromic IR responsivity of small side chain -NCS in two unexplored unnatural amino acids, isothiocyanyl alanine (NCSAla = Ita) and lysine (NCSLys = Itl), without perturbing the conformation is demonstrated in two designed short tripeptide (BocAla-NCSAla-Ala-OMe) and hexapeptide (BocLeu-Val-Phe-Phe-NCSLys-Gly-OMe). Demonstration of site specific fluorescent labeling in both the peptides and ligation type reaction in NCSLys indicates the novelty of these two amino acids as alternative to the available canonical amino acids.


Assuntos
Alanina/análogos & derivados , Alanina/química , Corantes Fluorescentes/química , Isotiocianatos/química , Lisina/análogos & derivados , Lisina/química , Oligopeptídeos/química , Alanina/síntese química , Sequência de Aminoácidos , Corantes Fluorescentes/síntese química , Ligação de Hidrogênio , Isotiocianatos/síntese química , Lisina/síntese química , Oligopeptídeos/síntese química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Solventes/química , Espectrofotometria Infravermelho/métodos
17.
Angew Chem Int Ed Engl ; 57(33): 10646-10650, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29905400

RESUMO

Dual-labeled biomolecules constitute a new generation of bioconjugates with promising applications in therapy and diagnosis. Unfortunately, the development of these new families of biologics is hampered by the technical difficulties associated with their construction. In particular, the site specificity of the conjugation is critical as the number and position of payloads can have a dramatic impact on the pharmacokinetics of the bioconjugate. Herein, we introduce dichlorotetrazine as a trivalent platform for the selective double modification of proteins on cysteine residues. This strategy is applied to the dual labeling of albumin with a macrocyclic chelator for nuclear imaging and a fluorescent probe for fluorescence imaging.


Assuntos
Albumina Sérica/química , Tetrazóis/química , Aminas/química , Sequência de Aminoácidos , Animais , Cisteína/química , Corantes Fluorescentes/química , Humanos , Camundongos , Imagem Óptica , Peptídeos/química , Peptídeos/metabolismo , Albumina Sérica/metabolismo , Distribuição Tecidual
18.
Small ; 13(41)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898567

RESUMO

Aggregation induced emission (AIE) has attracted considerable interest for the development of fluorescence probes. However, controlling the bioconjugation and cellular labeling of AIE dots is a challenging problem. Here, this study reports a general approach for preparing small and bioconjugated AIE dots for specific labeling of cellular targets. The strategy is based on the synthesis of oxetane-substituted AIEgens to generate compact and ultrastable AIE dots via photo-crosslinking. A small amount of polymer enriched with oxetane groups is cocondensed with most of the AIEgens to functionalize the nanodot surface for subsequent streptavidin bioconjugation. Due to their small sizes, good stability, and surface functionalization, the cell-surface markers and subcellular structures are specifically labeled by the AIE dot bioconjugates. Remarkably, stimulated emission depletion imaging with AIE dots is achieved for the first time, and the spatial resolution is significantly enhanced to ≈95 nm. This study provides a general approach for small functional molecules for preparing small sized and ultrastable nanodots.


Assuntos
Reagentes de Ligações Cruzadas/química , Imageamento Tridimensional , Luz , Nanopartículas/química , Nanotecnologia/métodos , Cor , Difusão Dinâmica da Luz , Molécula de Adesão da Célula Epitelial/metabolismo , Fluorescência , Humanos , Células MCF-7 , Microscopia , Microtúbulos/metabolismo , Tamanho da Partícula , Frações Subcelulares/metabolismo
19.
Methods ; 103: 4-10, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033177

RESUMO

Incorporation of modified or labeled nucleotides at specific sites in RNAs is critical for gaining insights into the structure and function of RNAs. Preparation of site-specifically labeled large RNAs in amounts suitable for structural or functional studies is extremely difficult using current methodologies. The position-selective labeling of RNA, PLOR, is a recently developed method that makes such syntheses possible. PLOR allows incorporation of various probes, including (2)D/(13)C/(15)N-isotopic labels, Cy3/Cy5/Alexa488/Alexa555 fluorescent dyes, biotin and other chemical groups, into specific positions in long RNAs. Here, we describe in detail the use of PLOR to label RNAs at specific segment(s) or discrete sites.


Assuntos
RNA/química , Sequência de Bases , Biocatálise , RNA Polimerases Dirigidas por DNA/química , Corantes Fluorescentes/química , Hidrazinas/química , Sequências Repetidas Invertidas , Coloração e Rotulagem , Proteínas Virais/química
20.
Macromol Rapid Commun ; 38(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27873430

RESUMO

Novel difunctional initiators that incorporate Förster/fluorescence resonance energy transfer (FRET) pairs are generated to carry out atom transfer radical polymerization of styrene, methyl methacrylate, and n-butyl methacrylate monomers by an efficient manner. Based on the chemical structures of the initiators, the locations of the fluorophore moiety are dictated to be in the center of the chain with accurately quantified chain functionality (>90% labeling ratio). The site-specific integration of FRET dyes into separate polymer chain centers allows for characterization of the well-defined interchain distance quantitatively based on the response between these fluorescent probes. The reliability of this technique is verified in bulk state, which is in well agreement with the theoretical ones. This well-defined FRET system is expected to be a promising candidate to provide a distinct physical image at a microscopic level regarding scaling chain dimension, chain interpenetration, and polymer compatibility.


Assuntos
Corantes Fluorescentes/química , Polimerização , Polímeros/síntese química , Transferência Ressonante de Energia de Fluorescência , Radicais Livres/química , Estrutura Molecular , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA